Skip to main content

INVESTIGATION OF CRYSTAL IDENTIFICATION METHODS FOR ClearPETTMPHOSWICH DETECTOR

  • Conference paper
Book cover Radiation Detectors for Medical Applications

Abstract

For the LYSO/LuYAP phoswich solution adapted in the ClearPETTM scanner with depth of interaction capability, results of ongoing research are presented. Various digital methods of crystal layer identification have been developed and tested on presently used as well as prospective scintillator materials. The application of neural networks has been identified as relatively simple but powerful tool for development of efficient and versatile algorithms of crystal identification. New phoswich solutions for PET scanners with depth of interaction capability have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. S. Tavernier et al., The ClearPET project, Nucl. Instr. Methods Phys. Res., A 527, 171–174 (2004)

    Article  Google Scholar 

  2. S. Tavernier et al., First results with the ClearPET™ Rodent small animal PET scanner, presented at NATO ARW / SCINT 2005, to be published in NATO science book “Radiation detectors for medical applications”

    Google Scholar 

  3. raytest GmbH, Straubenhardt, Germany (2005); http://www.raytest.de/index2.html

    Google Scholar 

  4. M. Streun, G. Brandenburg, H. Larue, E. Zimmermann, K. Ziemons, H. Halling, A PET system with free-running ADCs, Nucl. Instr. Methods, Phys. Res., A 486, 18–21 (2002)

    Google Scholar 

  5. M. Streun, G. Brandenburg, H. Larue, E. Zimmermann, K. Ziemons, H. Halling, Coincidence detection by digital processing of free-running sampled pulses, Nucl. Instr. Methods Phys. Res., A 487, 530–534 (2002)

    Google Scholar 

  6. A.F. Chatziioannou, S.R. Cherry, Y. Shao, R.W. Silverman, K. Meadors, T. H. Farquhar, M. Pedarsani, and M. E. Phelps, Performance evaluation of microPET: a high-resolution Lutetium oxyorthosilcate PET scanner for animal imaging, J. Nucl. Med., 1164–1175 (1999)

    Google Scholar 

  7. R.S. Balaban, and V. A Hampshire, Challenges in small animal noninvasive imaging, ILAR J. 42, 248–262 (2001)

    Google Scholar 

  8. S.R. Cherry, and S.S. Gambhir, Use of positron emission tomography in animal research, ILAR J. 42, 219–232 (2001)

    Google Scholar 

  9. P. Bartzakos, and C.L. Thompson, A depth-encoded PET detector, IEEE Trans. Nucl. Sci. 38, 732–738 (1991)

    Google Scholar 

  10. W.W. Moses, S.E. Derenzo, C.L. Melcher, and R.A. Manente, A room temperature LSO/Pin photodiode PET detector module that measures depth of interaction, IEEE Trans. Nucl. Sci. 42, 1085–1089 (1995)

    Google Scholar 

  11. M. Dahlbom, L.R. MacDonald, L. Eriksson, M. Paulus, M. Andreaco, M. E. Casey, and C. Moyers, Performance of YSO/LSO phoswich detector for use in a PET/SPECT system, IEEE Trans. Nucl. Sci. 44, 1114–1119 (1998)

    Google Scholar 

  12. H. Murayama, H. Ishibashi, H. Uchida, T. Omura, and T. Yamashita, Depth encoding multicrystal detectors for PET, IEEE Trans. Nucl. Sci. 45, 1152–111157 (1998)

    Google Scholar 

  13. C. Moisan, M. S. Andreaco, J.G. Rogers, S. Paquet, D. Vozza, Segmented LSO crystals for depth of interaction encoding in PET, IEEE Trans. Nucl. Sci. 45, 1030–1035 (1998)

    Google Scholar 

  14. J. Seidel, J. J. Vaquero, W. R. Gandler, and M. V. Green, Depth identification accuracy of a three layer phoswich PET detector module, IEEE Trans. Nucl. Sci. 46, 485–490 (1999)

    Google Scholar 

  15. Y. Shao, R.W. Silverman, R. Farrell, L. Cirignano, R. Grazioso, K.S. Shah, G. Vissel, M. Clajus, T.O. Tumer, and S.R. Cherry, Design studies of a high resolution PET detector using APD arrays, IEEE Trans. Nucl. Sci. 47, 1051–1057 (2000)

    Google Scholar 

  16. U. Heinrichs, U. Pietrzyk, and K. Ziemons, Design optymisation of the PMT-ClearPET prototypes based on simulation studies with GEANT3, IEEE Trans. Nucl. Sci. 50, 1428–1432 (2003)

    Google Scholar 

  17. J. Seidel, J.J. Vaquero, and M.V. Green, Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanner without depth-of-interaction capability, IEEE Trans. Nucl. Sci. 50, 1347–1350 (2003)

    Google Scholar 

  18. H.D. Wilkinson, The phoswich - a multiple phosphor, Rev. Scien. Instr. 23(8), 414–420 (1952)

    Google Scholar 

  19. A.Z. Nagy, T. Razga, Radioisotopic combined moisture-density meter, J. Sci. Instrum. 43(6), 383–387 (1966)

    Google Scholar 

  20. T. Hiramoto, E. Tanak, A low background dual phosphor beta-ray spectrometer, Nucl. Instrum. Meth. 64, 35–40 (1968)

    Google Scholar 

  21. F. Frontera, D. Dal Fiume, G. Landini, E. Artina, M. Biserni, V. Chiaverini, F. Monzani, E. Costa, R. C. Butler, The high energy experiment PDS (=phoswich detection system) on board the X-ray astronomy satellite SAX, Conf. Rec. of 1992 IEEE NSS&MIC 1, 646–648 (1992).

    Google Scholar 

  22. K.S.K. Lum, R. P. Manandhar, S. S. Eikenberry, M. Krockenberger, and J. E. Grindlay, Initial performance of the EXITE2 imaging phoswich detector/telescope for hard X-ray astronomy, IEEE Trans. Nucl. Sci., 41(4), 1354–1364 (1994)

    Google Scholar 

  23. K. Yasuda, S. Usuda, and H. Gunji, Simultaneous alpha, beta/gamma, and neutron counting with phoswich detectors by using a dual-parameter technique, IEEE Trans. Nucl. Sci. 48(4), 1162–1164 (2001)

    Google Scholar 

  24. R.B. McKibben, J.J. Connell, J.R. Macri, M.L. McConnell, J.M. Ryan, E.O. Fluckiger, M.R. Moser, J.C. Brown, and A.L. McKinnon, Applications of a phoswich-based detector for fast (1-10 MeV) solar neutrons for missions to the inner heliosphere, Advanc. Space Res., in press, available online at www.sciencedirect.com

    Google Scholar 

  25. M.L. Daburon, D. Bullier, and C. Pitiot, Phoswich Detector Utilisation for In Vivo Lung Measurement of Plutonium and Americium after the Chernobyl Accident, Rad. Prot. Dosim. 26, 211–215 (1989)

    Google Scholar 

  26. C.S. Levin, M.P. Tornai, L.R. MacDonald, and E.J. Hoffman, Annihilation Ray Background Characterization and Rejection for a Small Beta Camera Used for Tumor Localization During Surgery, IEEE Trans. Nucl. Sci. 44(3), 1120–1126 (1997)

    Google Scholar 

  27. M. P. Tornai, C.S. Levin, L.R. MacDonald et al., A miniature phoswich detector for gamma-ray localization and beta imaging, IEEE Trans. Nucl. Sci. 45, 1166–1173 (1998)

    Google Scholar 

  28. S. Yamamoto, K. Tarutani, M. Minato, H. Watabe, H. Iida, Development of a Phoswich Detector for a Continuous Blood-Sampling System, IEEE Trans. Nucl. Sci. 48 (4), 1408–1411 (2001)

    Google Scholar 

  29. C.F. Wang, J.H. Lee, and H.J. Chiou, Rapid determination of Sr-89/Sr-90 in radwaste by low-level background beta counting system, Appl. Rad. Isot. 45/2, 251–256 (1994)

    Google Scholar 

  30. J.L. Genicot, The measurement of incorporated radioactive actinides in the body by direct methods, J. Alloys Comp. 213–214, 484–485 (1994)

    Google Scholar 

  31. S. Wilson, G. Baker, and K. Schlinsker, Pulse Shape Discriminator for NaJ-CsJ Phoswich Detectors, IEEE Trans. Nucl. Sci. 19/1, 512–517 (1972)

    Google Scholar 

  32. J.B. Mosset, O. Devroede, M. Krieguer, M. Rey, J.M. Vieira, J.H. Jung, C. Kuntner, M. Streun, K. Ziemons, E. Auffray, P. Sempere-Roldan, P. Lecoq, P. Bruyndonckx, J.F. Loude, S. Tavernier, C. Morel, Development of an optimised LSO/LuYAP phoswich detector head for the ClearPET camera, Conf. Rec. IEEE NSS/MIC'04, 4, 2439–24431 (2004)

    Google Scholar 

  33. A.N. Belsky, E. Auffray, P. Lecoq, C. Dujardin, N. Garnier, H. Canibano, C. Pedrini, and A. G. Petrosyan, Progress in the development of LuAlO3-based scintillators, IEEE Trans. Nucl. Sci., 48, 1095–1100 (2001)

    Google Scholar 

  34. C. Kuntner, E. Auffray, C. Dujardin, P. Lecoq, C. Pedrini, M. Schneegans, Development of new mixed LuYAP:Ce crystals for application in a small animal PET scanner with DOI capability, Conf. Rec. IEEE NSS/MIC'02, 2, 676–681 (2002)

    Google Scholar 

  35. M. Balcerzyk, Z. Galazka, M. Kapusta, A. Syntfeld, and J.L. Lefaucheur, Perspectives for high resolution and high light output LuAP:Ce crystals, Proc. IEEE NSS/MIC'04, 986–992 (2004)

    Google Scholar 

  36. S. Delorme, R. Frei, C. Joseph, J.F. Loude, and C. Morel, Use of a neural network to exploit light division in a triangular scintillating crystal, Nucl. Instr. Methods Phys. Res., A 373, 111–118 (1996)

    Google Scholar 

  37. D. Clement, R. Frei, J.F. Loude, and C. Morel, Development of e 3D position sensitive scintillation detector using neural network, Proc. IEEE Med. Imag. Conf. 1998, 1448–1452 (1999)

    Google Scholar 

  38. P. Bruyndonckx, S. Leonard, S. Tavernier, C. Lemaitre, O. Devroede, Y. Wu and M. Krieguer, Neural network-based position estimators for PET detectors using monolithic LSO blocks, IEEE Trans. Nucl. Sci., 51 (5), 2520–2525 (2004)

    Google Scholar 

  39. S. Haykin, Neural Networks: A comprehensive Foundation, Prentice-Hall, (Upper Saddle River, NJ, 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Wisniewski, D. et al. (2006). INVESTIGATION OF CRYSTAL IDENTIFICATION METHODS FOR ClearPETTMPHOSWICH DETECTOR. In: Tavernier, S., Gektin, A., Grinyov, B., Moses, W.W. (eds) Radiation Detectors for Medical Applications. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5093-3_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5093-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5091-6

  • Online ISBN: 978-1-4020-5093-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics