Skip to main content

INORGANIC SCINTILLATORS IN POSITRON EMISSION TOMOGRAPHY

  • Conference paper
Radiation Detectors for Medical Applications

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

At present large activity is going on in developing positron emission tomography (PET) systems with better specifications. In recent years a number of new gamma-ray scintillators has become commercially available. These new materials were either derived from earlier known scintillators, e.g. Lu1-x YxAlO3:Ce (LuYAP) and Lu2(1-x)Y2xSiO5:Ce (LYSO), or are the result of new discoveries, such as LaCl3:Ce and LaBr3:Ce. The first two materials are primarily of interest for PET because of the relatively high sensitivity for gamma rays and fast response time. The halide scintillators show an energy resolution of ~3% at 662 keV, which is unprecedented for scintillators, a very high light yield and a fast response time. This combination makes LaBr3:Ce an attractive scintillator for timeof- flight (TOF) PET, in spite of the poorer intrinsic sensitivity for annihilation radiation. At the same time the search for and research on new materials is going on. For example LuI3:Ce is a new material with a very high light yield (~90,000 photons per MeV). Both old and new scintillators are considered for application in new PET systems. A review will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. Cherry, J.A. Sorenson, and M.E. Phelps, Positron Emission Tomography, in: Physics in Nuclear Medicine, 3rd. ed., Saunders, Philadelphia, pp. 325–360

    Google Scholar 

  2. M.E. Casey and R. Nutt, A multicrystal two dimensional BGO detector system for positron emission tomography, IEEE Trans. Nucl. Sci. 33, 460–463 (1986)

    Google Scholar 

  3. T.R. DeGrado, T.G. Turkington, JJ. Williams, C.W. Stearns, J.M. Hoffman, and R.E. Coleman, Performance characteristics of a whole-body PET scanner, J. Nucl. Med. 35, 1398–1406 (1994)

    PubMed  CAS  Google Scholar 

  4. K. Wienhard, M. Dahlbom, L. Eriksson, C. Michel, T. Bruckbauer, U. Pietrzyk, and W.-D. Heiss, The ECAT EXACT HR: performance of a new high resolution positron scanner, J. Comput. Assist. Tomogr. 18, 110–118 (1994)

    Article  PubMed  CAS  Google Scholar 

  5. D.W. Townsend, T.J. Spinks, T. Jones, A. Geissbühler, M. Defrise, M.C. Gilardi, and J. Heather, Three-dimensional reconstruction of PET data from a multi-ring camera, IEEE Trans. Nucl. Sci. 36, 1056–1065 (1989)

    Article  CAS  Google Scholar 

  6. S.R. Cherry, M. Dahlbom, and E.J. Hoffman, 3D PET using a conventional multislice tomograph without septa, J. Comput. Assist. Tomogr. 15, 655–668 (1991)

    PubMed  CAS  Google Scholar 

  7. C.W.E. van Eijk, Inorganic scintillators in medical imaging, Phys. Med. Biol. 47, R85–R106 (2002)

    Article  PubMed  Google Scholar 

  8. W.W. Moses and K.S. Shah, Potential for RbGd2Br7:Ce, LaCl3:Ce, LaBr3:Ce, and LuI3:Ce in nuclear medical imaging, Nucl. Instr. Meth. A 537, 317–320 (2005)

    Article  CAS  Google Scholar 

  9. M.J. Weber and R.R. Monchamp, Luminescence of Bi4Ge3O12: spectral and decay properties, J. Appl. Phys. 44, 5495–5499 (1973)

    Article  CAS  Google Scholar 

  10. I. Holl, E. Lorenz, and G. Mageras, A measurement of the light yield of common inorganic scintillators, IEEE Trans. Nucl. Sci. 35, 105–109 (1988)

    Article  CAS  Google Scholar 

  11. C.L. Melcher and J.S. Schweitzer, Cerium-doped Lutetium Oxyorthosilicate: A fast, efficient new scintillator, IEEE Trans. Nucl. Sci. 39, 502–505 (1992)

    Article  CAS  Google Scholar 

  12. C.L. Melcher, M. Schmand, M. Eriksson, L. Eriksson, M. Casey, R. Nutt, J.L. Lefaucheur, and B. Chai, Scintillation properties of LSO:Ce Boules, 1999 IEEE NSS/MC Conference Record, CDROM (1999) N9–3

    Google Scholar 

  13. T. Kimble, M. Chou, B.H.T. Chai, Scintillation Properties of LYSO crystals, 2002 IEEE NSS/MC Conference Record, CDROM (2002) M10–34

    Google Scholar 

  14. B.I. Minkov, Promising new lutetium based single crystals for fast scintillation, Functional Materials 1, 103–105 (1994)

    Google Scholar 

  15. W.W. Moses, S.E. Derenzo, A. Fyodorov, M. Korzhik, A. Gektin, B. Minkov, and V. Aslanov, LuAlO3:Ce – A high density, high speed scintillator for gamma detection, IEEE Trans. Nucl. Sci. 42, 275–279 (1995)

    Article  CAS  Google Scholar 

  16. A. Lempicki, M.H. Randies, D. Wisniewski, M. Balcerzyk, C. Brecher, and A. Wojtowicz, LuAlO3:Ce and other aluminate scintillators, IEEE Trans. Nucl. Sci. 42, 280–284 (1995)

    Article  CAS  Google Scholar 

  17. J.A. Mares, M. Nikl, E. Mihokova, J. Kvapil, J. Giba, and K. Blazek, Spectroscopy and transfer processes in LuxGdl-xAlO3 :Ce scintillators, J. of Luminescence 72–74, 737–739 (1997)

    Article  Google Scholar 

  18. C. Dujardin, C. Pedrini, C. Blanc, J.C. Gâcon, J.C. van’t Spijker, O.W.F. Frijns, C.W.E. van Eijk, P. Dorenbos, R. Chen, A. Fremout, F. Tallouf, S. Tavernier, P. Bruyndonckx, and A.G. Petrosyan, Optical and scintillation properties of large LuAlO3:Ce3+ crystals, Journal of Physics, Condensed Matter 10, 3061–3073 (1998)

    Article  CAS  Google Scholar 

  19. C. Kuntner, H. Aiginger, E. Auffray, J. Glodo, M. Kapusta, P. Lecoq, M. Moszynski, M. Schneegans, P. Szupryczynski, and A.J. Wojtowicz, Scintillation properties and mechanism in Lu0.8Y0.2AlO3:Ce, Nucl. Instr. Meth. A 486, 176–180 (2002)

    Article  CAS  Google Scholar 

  20. D. Pauwels, N. Le Masson, B. Viana, A. Kahn-Harari, E.V.D. van Loef, P. Dorenbos, and C.W.E. van Eijk, A novel inorganic scintillator: Lu2Si2O7:Ce3+ (LPS), IEEE Trans. Nucl. Sci. 47, 1787–1790 (2000)

    Article  CAS  Google Scholar 

  21. J.C. van’t Spijker, P. Dorenbos, C.P. Allier, C.W.E. van Eijk, A.R.H.F. Ettema, and G. Huber, Lu2S3:Ce3+, a new red luminescing scintillator, Nucl. Instr. Meth. B 134, 304–309 (1998)

    Article  CAS  Google Scholar 

  22. K. Takagi and T. Fukazawa, Cerium-activated Gd2SiO5 single crystal scintillator, Appl. Phys. Lett. 42, 43–45 (1983)

    Article  CAS  Google Scholar 

  23. H. Ishibashi, K. Shimizu, K. Susa, and S. Kubota, Cerium doped GSO scintillators and its application to position sensitive detectors, IEEE Trans. Nucl. Sci. 36, 170–172 (1989)

    Article  CAS  Google Scholar 

  24. E. Auffrey, F. Cavallari, P. Lecoq, P. Sempere, and M. Schneegans, Status of the PWO crystal production from Russia for CMS-ECAL, Nucl. Instr. Meth. A 486, 111–115 (2002)

    Article  Google Scholar 

  25. M. Nikl, P. Bohacek, E. Mihokova, N. Solovieva, A. Vedda, M. Martini, GP Pazzi, P. Fabeni, and M. Kobayashi, Complete characterization of doubly doped PWO4:Mo, Y scintillators, J. Appl. Phys. 91, 2791–2797 (2002)

    Article  CAS  Google Scholar 

  26. M. Kobayashi, Y. Usuki, M. Ishii and M. Nikl, Doping PbWO4 with different ions to increase the light yield, Nucl. Instr. Meth, A 486, 170–175 (2002)

    Article  CAS  Google Scholar 

  27. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel, High-energy-resolution scintillator: Ce3+ activated LaCl3, Appl. Phys. Lett. 77(10), 1467–1468 (2000)

    Article  Google Scholar 

  28. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Gtidel, High-energy-resolution scintillator: Ce3+ activated LaBr3, Appl. Phys. Lett. 79(10), 1573–1575 (2001)

    Article  CAS  Google Scholar 

  29. K.S. Shah, J. Glodo, M. Klugerman, W. Higgins, T. Gupta, P. Wong, W.W. Moses, S.E. Derenzo, MJ. Weber, and P. Dorenbos, LuI3:5%Ce3+ - A new scintillator gor gamma ray spectroscopy, IEEE Trans. Nucl. Sci. 51(5), 2302–2305 (2004)

    Article  CAS  Google Scholar 

  30. M. D. Birowosuto, P. Dorenbos, C. W. E. van Eijk, K. W. Krämer, H. U. Güdel, Scintillation Properties of LuI3: Ce3+ - High Light Yield Scintillators, IEEE Trans. Nucl. Sci. 52(4), 1114–1118 (2005)

    Article  CAS  Google Scholar 

  31. P.A. Rodnyi, P. Dorenbos, and C.W.E. van Eijk, Energy Loss in Inorganic Scintillators, Phys. Stat. Sol. (b) 187, 15–29 (1995)

    CAS  Google Scholar 

  32. C.W.E. van Eijk, Inorganic-scintillator development, Nucl. Instr. Meth. A 460, 1–14 (2001)

    Article  Google Scholar 

  33. D.W. Townsend, presented by C.Morel at the 6th Int. Conf. on Inorganic Scintillators and their use in Scientific and Industrial Applications, SCINT2001, Chamonix, France, 16–21 Sept. 2001

    Google Scholar 

  34. K. Wienhard, M. Schmand, M.E. Casey, K. Baker, J. Bao, L. Eriksson, W.F. Jones, C. Knoess, M. Lenox, M. Lercher, P. Luk, C. Michel, J.H. Reed, N. Richerzhagen, J. Treffert, S. Vollmar, J.W. Young, W.D. Heiss, and R. Nutt, The ECAT HRRT: Performance and First Clinincal Application of the New High Resolution Research Tomograph, 2000 IEEE NSS/MIC Conference Record, CDROM 17 (2000) 2–6

    Google Scholar 

  35. K. Ziemons, E. Auffray, R. Barbier et al., the Crystal Clear Collaboration, The ClearPET project: development of a 2nd generation high-performance small animal PET scanner, Nucl. Instr. Meth. A 537, 307–311 (2005)

    Article  CAS  Google Scholar 

  36. J.S. Karp and M.E. Daube-Witherspoon, Depth-of-interaction determination in NaI(Tl) and BGO scintillation crystals using a temperature gradient, Nucl. Instr. Meth. 260, 509–517 (1987)

    Article  Google Scholar 

  37. J. Seidel, J.J. Vaquero, S. Siegel, W.R. Gandler, and M.V. Green, Depth Identification Accuracy of a Three Layer Phoswich PET Detector Module, IEEE Trans. Nucl. Sci. 46, 485–490 (1999)

    Article  CAS  Google Scholar 

  38. A. Saoudi, C.M. Pepin, F. Dion, M. Bentourkia, R. Lecomte, M. Andreaco, M. Casey, R. Nutt, and H. Daudet, Investigation of Depth-of-Interaction by Pulse Shape Discrimination in Multicrystal Detectors Read Out by Avalanche Photodiodes, IEEE Trans. Nucl. Sci. 46, 462–467 (1999)

    Article  CAS  Google Scholar 

  39. L.J. Meng and D. Ramsden, Performance Results of a Prototype Depth-encoding PET Detector, IEEE Trans. Nucl. Sci., 47, 1011–1017 (2000)

    Article  Google Scholar 

  40. K.S. Shah et al, presented at the 6th Int. Conf. on Inorganic Scintillators and their use in Scientific and Industrial Applications SCINT2001, Chamonix, France, 16–21 Sept. 2001

    Google Scholar 

  41. C. Morel, S. Delorme, R. Frei, C. Joseph, and J.-F. Loude, Use of a neural network to exploit light division in a triangular scintillating crystal, in: Proceedings of the International Conference on Inorganic Scintillators and their Applications, SCINT95, Delft University Press, Delft, 1996, pp. 591–595

    Google Scholar 

  42. J.W. LeBlanc and R.A.Thompson, A novel PET detector block with three-dimensional hit position encoding, IEEE Trans. Nucl. Sci. 51, 746–751 (2004)

    Article  Google Scholar 

  43. P. Bruyndonckx, S. Léonard, J. Liu, S. Tavernier, P. Szupryczynski, and A. Fedorov, Study of Spatial Resolution and Depth of Interaction of APD-Based PET Detector Modules Using Light Sharing Schemes, IEEE Trans. Nucl. Sci. 50(5), 1415–1419 (2003)

    Article  Google Scholar 

  44. P. Bruyndonckx, S. Léonard, S. Tavernier, C. Lemaître, O. Devroede, Y. Wu, M. Krieguer, Neural Network-Based Position Estimators for PET Detectors Using Monolithic LSO Blocks, IEEE Trans. Nucl. Sci. 51(5), 2520–2525 (2004)

    Article  Google Scholar 

  45. D. J. van der Laan, M. C. Maas, D. R. Schaart, P. Bruyndonckx, S. Léonard, and C. W. E. van Eijk, Performance optimization of continuous scintillator PET detector modules using Cramér-Rao theory combined with Monte Carlo simulations, in: 2004 IEEE NSS-MIC Conference Record, CDROM M2–85 (2004)

    Google Scholar 

  46. T.F. Budinger, Time-of-Flight positron emission tomography – status relative to conventional PET, J, Nucl. Med. 24, 73–76 (1983)

    CAS  Google Scholar 

  47. T. Tomitani, Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography, IEEE Trans. Nucl. Sci. 28, 4582–4589 (1981)

    Article  Google Scholar 

  48. W.W. Moses, Time of Flight in PET Revisited, IEEE Trans. Nucl. Sci. 50(5), 1325–1330 (2003)

    Article  Google Scholar 

  49. S. Surti, J.S. Karp, G. Muehllehner, and P.S. Raby, Investigation of Lanthanum Scintillators for 3-D PET, 2002 IEEE NSS-MIC Conference Record, CDROM M7–38 (2002)

    Google Scholar 

  50. S. Surti, J.S. Karp, and G. Muehllehner, Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation, Phys. Med. Biol. 49, 4593–4610 (2004)

    Article  PubMed  CAS  Google Scholar 

  51. J.S. Karp, A. Kuhn, A.E. Perkins, S. Surti, M.E. Werner, M.E. Daube-Witherspoon, L. Popescu, S. Vandenberghe, and G. Muehllehner, Characterization of a Time-of-Flight PET Scanner based on Lanthanum Bromide, 2005 IEEE NSS-MIC Conference Record, CDROM M04–8 (2005)

    Google Scholar 

  52. C.L. Melcher, presented at this workshop

    Google Scholar 

  53. C.L. Melcher, private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Van Eijk, C.W. (2006). INORGANIC SCINTILLATORS IN POSITRON EMISSION TOMOGRAPHY. In: Tavernier, S., Gektin, A., Grinyov, B., Moses, W.W. (eds) Radiation Detectors for Medical Applications. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5093-3_11

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5093-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5091-6

  • Online ISBN: 978-1-4020-5093-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics