Skip to main content

Part of the book series: Advanced Microelectronics ((MICROELECTR.,volume 25))

  • 1204 Accesses

Abstract

Up to now the evolution of digital microelectronics is characterized by the exponential growth of the number of transistors per chip which results in an exponential increase of computing power. In 1965 Gordon Moore noted that the number of transistors per chip will double every 18 to 24 month. This famous prediction which is known as Moore’s Law has become a self fulfilling prophecy which is not limited to the transistor count anymore: Moreover, most characteristic technology or system figures show an exponential progression. Fig. 1.1 for instance shows the evolution of the computing power in million instructions per second (MIPS) of the Intel microprocessors [Moore, 2003]. It is amazing that the postulated exponential growth is realized almost perfectly. However, as shown in Fig. 1.2 this performance increase is achieved only with an exponential growth of the transistor number per chip. The continuous growth of the device number is enabled by technology scaling which results in a higher transistor density but also in an increased die size. Indeed even the die size has been doubled every ten years. Technology scaling, i.e. the shrinking of the transistor dimensions not only increases the gate density but also increases the switching speed of logic gates. This reflects in continuously growing clock frequencies. As the price of most chips is constant over the particular product generations the exponential growth of the device number corresponds to an exponential decay of the cost per transistor or basic logic function respectively. The positive aspects of Moore’s Laware accompanied by a couple of drawbacks which also show an exponential behavior: More computing power and more transistors means also more internal capacitance, more switching events and consequently more power dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Henzler, S. (2006). INTRODUCTION TO LOW-POWER DIGITAL INTEGRATED CIRCUIT DESIGN. In: Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies. Advanced Microelectronics, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5081-X_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5081-X_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5080-0

  • Online ISBN: 978-1-4020-5081-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics