Skip to main content

Bolide Energy Estimates from Infrasonic Measurements

  • Chapter
  • 947 Accesses

Abstract

The acoustic amplitude-yield relationships, including formal errors, for a population of energetic (>0.05 kt) and well-observed bolide events have been investigated. Using various infrasonic signal measurements as a function of range, these data have been calibrated against optical yield estimates from satellite measurements. Correction for the presence of stratospheric winds has also been applied to the observations and is found to be small, suggesting that either scatter is dominated by other variations amongst the fireball population such as differing burst altitudes and greater or lesser amounts of fragmentation or the magnitude of the variability in the stratospheric winds, which can be comparable to or even exceed the strength of the winds themselves. Comparison to similar point source, ground-level nuclear and high explosive airwave data shows that bolide infrasound is consistently lower in amplitude. This downward shift relative to nuclear and HE data is interpreted as due in part to increased weak non-linearity during signal propagation from higher altitudes. This is a likely explanation, since mean estimates of the altitude of maximum energy deposition along the bolide trajectory was found to be between 20 and 30 km altitude for this fireball population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Menahem, A.: 1975, Phys. Earth Plan. Sci. 11, 1–35.

    Article  ADS  Google Scholar 

  • Borovička, J. and Kalenda, P.: 2003, Meteorit. Plan. Sci. 38, 1023–1043.

    Article  ADS  Google Scholar 

  • Brown, P. G., Whitaker R. W., and ReVelle D. O.: 2002a, Geophys. Res. Lett., 29, 1–4.

    MATH  Google Scholar 

  • Brown, P. G., Spalding R. E., ReVelle D. O., Tagliaferri E., and Worden, S. P.: 2002b, Nature 420, 314–316.

    ADS  Google Scholar 

  • Brown, P. G., ReVelle D. O., Tagliaferri E., and Hildebrand A. R.: 2002c, Meteorit. Plan. Sci. 37, 661–675.

    Article  ADS  Google Scholar 

  • Brown P. G., Kalenda P., ReVelle D. O., and Borovička J.: 2003, Meteorit. Plan. Sci. 38, 989–1003.

    Article  ADS  Google Scholar 

  • Brown, P., Pack D., Edwards W. N., ReVelle, D. O., Yoo B. B., Spalding R.E., and Tagliaferri E.: 2004, Meteorit. Plan. Sci. 39, 1781–1796.

    Article  ADS  Google Scholar 

  • Tagliaferri, E., Spalding, R., Jacobs, C., Worden, S. P., and Erlich, A.: 1994, Hazards due to Comets and Asteroids, The University of Arizona Press, pp. 199–220.

    Google Scholar 

  • Ceplecha, Z., Borovička, J., Elford, W. G., ReVelle, D. O., Hawkes, R. L., Porubčan, V., and Šimek, S.: 1998, Space Science Reviews, 84, 327–471.

    Article  ADS  Google Scholar 

  • Docobo, J. and Ceplecha, Z.: 1999, Astron. Astrophys. Suppl. Ser. 138, 1–9.

    Article  ADS  Google Scholar 

  • Dziewonski, A. and Hales, A.: 1972, in Bolt B. (ed.), Methods in Computational Physics (vol. 11), Academic Press, New York, pp. 39–84.

    Google Scholar 

  • Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery S. K., Clark R. R., Franke S. J., Fraser G. J., Tsuda T., Vial F., and Vincent R. A.: 1996, J. Atmos. Terr. Phys. 58, 1421–1447.

    Article  ADS  Google Scholar 

  • Hildebrand, A. R., Brown, P., Crawford, D., Boslough, M., Chael, E., ReVelle, D., Doser, D., Tagliaferri, E., Rathbun, D., Cooke, D., Adcock, C, and Karner, J.: 1999, LPSC XXX, Abstract #1525, Lunar and Planetary Science Institute, Houston.

    Google Scholar 

  • Pichon, A. L., Guerin, J. M., Blanc, E. and Reymond, D.: 2002, JGR 107, 4709, doi:10.1029/2001JD001283.

    Article  Google Scholar 

  • Reed, J. W.: 1977, J. Acous. Soc. Amer. 61, 39–47.

    Article  ADS  Google Scholar 

  • ReVelle, D. O.: 1976, JGR 81, 1217–1230.

    Article  ADS  Google Scholar 

  • ReVelle, D. O., and Whitaker, R. W.: 1997, LA-UR-96-3594, 1–15.

    Google Scholar 

  • ReVelle, D. O., Whitaker, R. W., and Armstrong, W. T.: 1998, LA-UR-98-2893, 1–12.

    Google Scholar 

  • Spurny, P., Oberst, J., and Heinlein, D.: 2003, Nature 423, 151–153.

    Article  ADS  Google Scholar 

  • United States Committee on Extension to the Standard Atmosphere: 1976, U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington.

    Google Scholar 

  • Webb, W. L.: 1966, Structure of the Stratosphere and Mesosphere, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Edwards, W.N., Brown, P.G., Revelle, D.O. (2005). Bolide Energy Estimates from Infrasonic Measurements. In: Hawkes, R., Mann, I., Brown, P. (eds) Modern Meteor Science An Interdisciplinary View. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5075-5_46

Download citation

Publish with us

Policies and ethics