Skip to main content

Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions

  • Chapter
Advances in Algal Biology: A Commemoration of the Work of Rex Lowe

Part of the book series: Developments in Hydrobiology ((DIHY,volume 185))

Abstract

The heterotrophic utilization of organic substrates by diatoms is likely an important survival strategy when light levels are too low for photosynthesis. The objectives of this study were: (1) to determine if heterotrophic utilization of a large array of organic compounds by eight common freshwater benthic diatom taxa was light-dependent, and (2) to determine if organic substrate utilization patterns differed between darkgrown diatoms and bacteria as a possible means of reducing competition by niche separation. Eight lightand dark-grown diatom taxa and five bacterial species were incubated in 96-well BiologĀ® Microtiter plates with each well containing 1 of 95 different organic substrates. Oxidation rates of each organic substrate were measured through time. There was a substantial increase in the number of organic substrates oxidized by diatoms grown in the dark compared to their light-grown counterparts, indicating that the transport systems for these molecules may be light activated. Therefore, diatoms likely only utilize these metabolically expensive uptake mechanisms when they are necessary for survival, or when substrates are plentiful. A principal components analysis indicated discernible differences in the types of organic-C substrates utilized by dark-grown diatoms and bacteria. Although bacteria were able to oxidize a more diverse array of organic substrates including carboxylic acids and large polymers, diatoms appeared to more readily utilize the complex carbohydrates. By oxidizing different organic substrates than bacteria, heterotrophically metabolizing diatoms may be reducing direct competition and enhancing coexistence with bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, R. K., H. E. Skipper, M. R. Reid, W. A. Short & G. L. Hogan, 1953. Studies on the photosynthetic reaction I. The assimilation of acetate by Nostoc muscorum. Journal of Biological Chemistry 204: 197ā€“205.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Amblard, C., 1991. Carbon heterotrophic activity of microalgae and cyanobacteria ā€” ecological significance. Annee Biologique 30: 6ā€“107.

    Google ScholarĀ 

  • Anitia, N. J., J. Y. Cheng & F. J. R. Taylor, 1969. The heterotrophic growth of a marine photosynthetic cryptomonad (Chroomonas saline). Proceedings of the International Seaweed Symposium 6: 17ā€“29.

    Google ScholarĀ 

  • Bertrand, J, 1992. Mouvements des diatomees II-synthese des mouvements. Cryptogamie: Algologie 13: 49ā€“71.

    Google ScholarĀ 

  • Burkholder, J. M., R. G. Wetzel & K. L. Klomparens, 1990. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Applied Environmental Microbiology 56: 2882ā€“2890.

    CASĀ  Google ScholarĀ 

  • Cole, J. J., 1982. Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology and Systematics 13: 291ā€“314.

    ArticleĀ  Google ScholarĀ 

  • De Lange, H. J., D. P. Morris & C. E. Williamson, 2003. Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs. Journal of Plankton Research 25: 111ā€“117.

    ArticleĀ  Google ScholarĀ 

  • Descy, J. P., B. Leporcq, L. Viroux, C. Francois & P. Servais, 2002. Phytoplankton production, exudation, and bacterial reassimilation in the River Meuse (Belgium). Journal of Plankton Research 24: 161ā€“166.

    ArticleĀ  Google ScholarĀ 

  • Dodds, W. K., 1992. A modified fiber-optic light microprobe to measure spherically integrated photosynthetic photon flux density: Characteristics of periphyton photosynthesisirradiance patterns. Limnology and Oceanography 37: 871ā€“878.

    CASĀ  Google ScholarĀ 

  • Flynn, K. J. & T. Butler, 1986. Nitrogen sources for growth of marine microalgae: Role of dissolved free amino acids. Marine Ecology Progress Series 34: 281ā€“304.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gurbuz, H. & E. Kivrak, 2003. Seasonal variations of benthic algae of Kuzgun Dam Reservoir and their relationship to environmental factors. Fresenius Environmental Bulleting 12: 1025ā€“1032.

    CASĀ  Google ScholarĀ 

  • Hellebust, J. A., 1971. Glucose uptake by Cyclotella cryptica: Dark induction and light inactivation of transport system. Journal of Phycology 7: 345ā€“349.

    Google ScholarĀ 

  • Hellebust, J. A. & J. Lewin, 1977. Heterotrophic nutrition. In Werner (ed.) The Biology of Diatoms. University of California Press, Berkeley, 169ā€“197.

    Google ScholarĀ 

  • Hudon, C. & E. Bourget, 1981. Initial colonization of artificial substrate: community development and structure studied by scanning electron microscopy. Canadian Journal of Fisheries and Aquatic Sciences 38: 1371ā€“1384.

    ArticleĀ  Google ScholarĀ 

  • Johnson, R. E., N. C. Tuchman & C. G. Peterson, 1997. Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society 16: 503ā€“519.

    ArticleĀ  Google ScholarĀ 

  • Jorgenson, B. B., N. P. Revsbech & Y. Cohen, 1983. Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography 28: 1075ā€“1093.

    Google ScholarĀ 

  • Klug, J. L., 2005. Bacterial response to dissolved organic matter affects resource availability for algae. Canadian Journal of Fisheries and Aquatic Sciences 62: 472ā€“481.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liehr, S. K., M. T. Suidan & J. W. Eheart, 1990. A modeling study of carbon and light limitation in algal biofilms. Biotechnology and Bioengineering 35: 233ā€“243.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu, M. S. & J. A. Hellebust, 1973. Utilization of amino acids as nitrogen sources, and their effects on nitrate reductase in the marine diatom Cyclotella cryptica. Canadian Journal of Microbiology 20: 1119ā€“1124.

    ArticleĀ  Google ScholarĀ 

  • McCormick, P. V. & R. J. Stevenson, 1991. Mechanisms of benthic algal succession in lotic environments. Ecology 72: 1835ā€“1848.

    ArticleĀ  Google ScholarĀ 

  • Michels, A., 1998. Effects of sewage water on diatoms (Bacillariophyceae) and water quality in two tropical streams in Costa Rica. Revista de BiologĆ­a Tropical 46: 153ā€“175.

    Google ScholarĀ 

  • Neilson, A. H. & R. A. Lewin, 1974. The uptake and utilization of organic carbon by algae; an essay in comparative biochemistry. Phycologia 13: 227ā€“264.

    CASĀ  Google ScholarĀ 

  • Nilsson, C. & K. SundbƤck, 1996. Amino acid uptake in natural microphytobenthic assemblages studied by microautoradiography. Hydrobiologia 332: 119ā€“129.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Paerl, H. W., 1991. Ecophysiological and trophic implications of light-stimulated amino acid utilization in marine picoplankton. Applied Environmental Microbiology 57: 473ā€“479.

    CASĀ  Google ScholarĀ 

  • Palmisano, A. C., J. B. SooHoo, D. C. White, G. A. Smith, G. R. Staton & L. H. Burckle, 1985. Shade adapted benthic diatoms beneath Antarctica sea ice. Journal of Phycology 21: 664ā€“667.

    ArticleĀ  Google ScholarĀ 

  • Parker, B. C., H. C. Bold & T. R. Deason, 1961. Facultative heterotrophy in some chlorococcacean algae. Science 133: 761ā€“763.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Pelczar, M. J., R. Reid & E. C. S. Chan, 1977. Microbiology. McGraw-Hill Book Company, New York, 952 pp.

    Google ScholarĀ 

  • Petit, M., G. P. Alves & P. Lavandier, 1999. Phytoplankton exudation, bacterial reassimilation and production for three diel cycles in different trophic conditions. Archiv fĆ¼r Hydrobiologie 146: 285ā€“309.

    CASĀ  Google ScholarĀ 

  • Puddu, A., A. Zoppini, S. Fazi, M. Rosati, S. Amalfitano & E. Magaletti, 2003. Bacterial uptake of DOM released from Plimited phytoplankton. FEMS Microbial Ecology 46: 257ā€“268.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rivkin, R. B. & M. Putt, 1987. Heterotrophy and photoheterotrophy by Antarctic microalgae: Light-dependent incorporation of amino acids and glucose. Journal of Phycology 23: 442ā€“452.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schollett, M. A., 1998 Organic nutrient preferences for benthic diatoms: An approach to quantifying heterotrophic metabolism. Masterā€™s Thesis. Loyola University Chicago, Chicago, IL, 91 pp.

    Google ScholarĀ 

  • Sinsabaugh, R. L. & A. E. Linkins, 1988. Exoenzyme activity associated with lotic epilithon. Freshwater Biology 20: 249ā€“261.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stadelmann, E. J., 1962. Permeability. In Lewin, (ed.) Physiology and Biochemistry of Algae. Academic Press, New York, 493ā€“528.

    Google ScholarĀ 

  • Steinman, A. D., C. D. McIntire, S. V. Gregory, G. A. Lamberti & L. R. Ashkenas, 1987. Effects of herbivore type and density on taxonomic structure and physiognomy of algal assemblages in laboratory streams. Journal of the North American Benthological Society 6: 175ā€“188.

    ArticleĀ  Google ScholarĀ 

  • Stewart, W. D. P., 1974. Algal Physiology and Biochemistry. University of California Press, Los Angeles, 989 pp.

    Google ScholarĀ 

  • Tuchman, N. C., 1996. The role of heterotrophy in benthic algae. In Stevenson, R. J. M. Bothwell, & R. Lowe (eds.) Algal Ecology: Freshwater Benthic Habitats. Academic Press, San Diego, 299ā€“319.

    Google ScholarĀ 

  • Tuchman, N. C. & R. J. Stevenson, 1991. Effects of selective grazing by snails on benthic algal succession. Journal of the North American Benthological Society 10: 430ā€“443.

    ArticleĀ  Google ScholarĀ 

  • Wasmund, N., 1987. Live algae in deep sediment layers. Internationale Revue der Gesamten Hydrobiologie 74: 589ā€“597.

    ArticleĀ  Google ScholarĀ 

  • Wetzel, R. G., P. G. Hatcher & T. S. Bianchi, 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnology and Oceanography 40: 1369ā€“1380.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang, Q., R. Gradinger & Q. S. Zhou, 2003. Competition within the marine microalgae over the polar dark period in the Greenland Sea of high Arctic. Acta Oceanologica Sinica 22: 233ā€“242.

    Google ScholarĀ 

  • Zotina, T., O. Koster & F. Juttner, 2003. Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance. Freshwater Biology 48: 1859ā€“1872.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2006 Springer

About this chapter

Cite this chapter

Tuchman, N.C., Schollett, M.A., Rier, S.T., Geddes, P. (2006). Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. In: Stevenson, R.J., Pan, Y., Kociolek, J.P., Kingston, J.C. (eds) Advances in Algal Biology: A Commemoration of the Work of Rex Lowe. Developments in Hydrobiology, vol 185. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5070-4_12

Download citation

Publish with us

Policies and ethics