Advertisement

Pathophysiology, prevention and treatment of age-related osteoporosis in women

  • Moustapha Kassem
  • Kim Brixen
Chapter
  • 954 Downloads

Abstract

One of the cardinal manifestations of old age in humans is bone loss leading to fragility of the skeleton and increased risk of fractures, a disease known as osteoporosis. It is estimated that approximately 45% of all women will suffer at least one osteoporotic fracture during their lifetime. Genetic, environmental, nutritional, biomechanical and hormonal factors determine the integrity of the skeleton and age-related bone loss and thus the risk for developing osteoporosis. Several pharmacological agents that are capable for decreasing the risk of fractures are currently available and have proven their efficacy in randomized clinical studies. Among these are the anti-catabolic drugs e.g., calcium, vitamin-D, estrogen, raloxifen, and bisphosphonates (e.g., etidronate, alendronate, risedronate, ibandronate, and pamidronate), anabolic drugs e.g., parathyroid hormone (1–34) and strontium ranelate which has both anti-catabolic and anabolic effects. Also, evidence suggests that individualized advice on lifestyle modification, e.g., increased physical exercise, cessation of smoking, fall prevention and use of hip protectors, should be offered to most patients

Keywords

aging osteoporosis bone bone remodeling pathophysiology endocrinology hormones bone loss osteoblasts osteoclasts light-emitting diode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, A.E., Wahner, H.W., Riggs, B.L., Hintz, R.L. (1984) Insulin-like growth factors I and II: aging and bone density in women. J.Clin.Endocrinol.Metab 59: 701–704.PubMedGoogle Scholar
  2. Beral, V. (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362: 419–27.PubMedCrossRefGoogle Scholar
  3. Brixen, K.T., et al. (2004) Teriparatide (biosynthetic human parathyroid hormone 1–34): a new paradigm in the treatment of osteoporosis. Basic Clin.Pharmacol.Toxicol. 94: 260–70.PubMedGoogle Scholar
  4. Cohen-Solal, M.E., Shih, M.S., Lundy, M.W., Parfitt, A.M. (1991) A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal osteoporosis. J.Bone Miner.Res. 6: 1331–1338.PubMedGoogle Scholar
  5. Copeland, K.C., Colletti, R.B., Devlin, J.T., McAuliffe, T.L. (1990) The relationship between insulin-like growth factor-I, adiposity, and aging. Metabolism 39: 584–587.PubMedCrossRefGoogle Scholar
  6. Cummings, S.R., Nevitt, M.C. (1989) A hypothesis: the causes of hip fractures. Journal of Gerontology 44: M107–M111.PubMedGoogle Scholar
  7. Cummings, S.R., et al. (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280: 2077–82.PubMedCrossRefGoogle Scholar
  8. Ebbesen, E.N., Thomsen, J.S., Beck-Nielsen, H., Nepper-Rasmussen, H.J., Mosekilde, L. (1999) Age- and gender-related differences in vertebral bone mass, density, and strength. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research 14: 1394–1403.Google Scholar
  9. Eriksen, E.F., Melsen, F., Mosekilde, L. (1984) Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metabolic Bone Disease & Related Research 5: 235–242.CrossRefGoogle Scholar
  10. Eriksen, E.F., Gundersen, H.J., Melsen, F., Mosekilde, L. (1984) Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metabolic Bone Disease & Related Research 5: 243–252.CrossRefGoogle Scholar
  11. Eriksen, E.F., Hodgson, S.F., Eastell, R., Cedel, S.L., O’Fallon, W.M., Riggs, B.L. (1990) Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J.Bone Miner.Res. 5: 311–319.PubMedCrossRefGoogle Scholar
  12. Eriksen, E.F., Langdahl, B., Vesterby, A., Rungby, J., Kassem, M. (1999) Hormone replacement therapy prevents osteoclastic hyperactivity: A histomorphometric study in early postmenopausal women. J.Bone Miner.Res. 14: 1217–1221.PubMedCrossRefGoogle Scholar
  13. Ettinger, B., et al. (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282: 637–45.PubMedCrossRefGoogle Scholar
  14. Finkelstein, J.W., Roffwarg, H.P., Boyar, R.M., Kream, J., Hellman, L. (1972) Age-related change in the twenty-four-hour spontaneous secretion of growth hormone. J.Clin.Endocrinol.Metab 35: 665–670.PubMedGoogle Scholar
  15. Florini, J.R., Prinz, P.N., Vitiello, M.V., Hintz, R.L. (1985) Somatomedin-C levels in healthy young and old men: relationship to peak and 24-hour integrated levels of growth hormone. J.Gerontol. 40: 2–7.PubMedGoogle Scholar
  16. Frost, H.M., Vilanueva, A.R., Jett, S., Eyring, E. Tetracycline-based analysis of bone remodelling in osteopetrosis. Clin.Orthop. 65: 203–217.Google Scholar
  17. Frost, H.M. (2001) The Utah paradigm of skeletal physiology: what is it? Veterinary and Comparative Orthopaedics and Traumatology 14: 179–184.Google Scholar
  18. Gilsanz, V., Kovanlikaya, A., Costin, G., Roe, T.F., Sayre, J., Kaufman, F. (1997) Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J.Clin.Endocrinol.Metab 82: 1603–1607.PubMedCrossRefGoogle Scholar
  19. Heshmati, H.M., Khosla, S., Burritt, M.F., O’Fallon, W.M., Riggs, B.L. (1998) A defect in renal calcium conservation may contribute to the pathogenesis of postmenopausal osteoporosis. J Clin Endocrinol Metab. 83: 1916–20.PubMedCrossRefGoogle Scholar
  20. Ho, K.Y., Evans, W.S., Blizzard, R.M., Veldhuis, J.D., Merriam, G.R., Samojlik, E., Furlanetto, R., Rogol, A.D., Kaiser, D.L., Thorner, M.O. (1987) Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J.Clin.Endocrinol.Metab 64: 51–58.PubMedGoogle Scholar
  21. Hughes, D.E., Dai, A., Tiffee, J.C., Li, H.H., Mundy, G.R., Boyce, B.F. (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat.Med. 2: 1132–1136.PubMedCrossRefGoogle Scholar
  22. Iranmanesh, A., Lizarralde, G., Veldhuis, J.D. (1991) Age and relative adiposity are specific negative determinants of the frequency and amplitude of growth hormone (GH) secretory bursts and the half-life of endogenous GH in healthy men. J.Clin.Endocrinol.Metab 73: 1081–1088.PubMedCrossRefGoogle Scholar
  23. Khosla, S., Melton, L.J., III, Atkinson, E.J., O’Fallon, W.M., Klee, G.G., Riggs, B.L. (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. The Journal of Clinical Endocrinology and Metabolism 83: 2266–2274.PubMedCrossRefGoogle Scholar
  24. Lu, P.W., Cowell, C.T., LLoyd-Jones, S.A., Briody, J.N., Howman-Giles, R. (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J.Clin.Endocrinol.Metab 81: 1586–1590.PubMedCrossRefGoogle Scholar
  25. Matkovic, V., Jelic, T., Wardlaw, G.M., Ilich, J.Z., Goel, P.K., Wright, J.K., Andon, M.B., Smith, K.T., Heaney, R.P. (1994) Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J.Clin.Invest 93: 799–808.PubMedCrossRefGoogle Scholar
  26. McClung, M.R., et al. (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N.Engl.J.Med. 344: 333–40.PubMedCrossRefGoogle Scholar
  27. Meunier, P.J., et al. (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N.Engl.J.Med. 350: 459–68.PubMedCrossRefGoogle Scholar
  28. Mosekilde, L., Mosekilde, L., Danielsen, C.C. (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8: 79–85.PubMedCrossRefGoogle Scholar
  29. Mosekilde, L. (1990) Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10: 13–35.PubMedCrossRefGoogle Scholar
  30. Mosekilde, L. (2005) Vitamin D and the elderly. Clin.Endocrinol. 62: 265–81.CrossRefGoogle Scholar
  31. Neer, R.M., et al. (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N.Engl.J.Med. 344: 1434–1441.PubMedCrossRefGoogle Scholar
  32. Nguyen, T.V., Blangero, J., Eisman, J.A. (2000) Genetic epidemiological approaches to the search for osteoporosis genes. J.Bone Miner.Res. 15: 392–401.PubMedCrossRefGoogle Scholar
  33. Pacifici, R. (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research 11: 1043–1051.Google Scholar
  34. Parfitt, A.M. (1991) Bone Forming Cells in Clinical Conditions. In: B.K.Hall (ed) In Bone, The Osteoblast and Osteocyte. The Telford Press, London, pp 351–426.Google Scholar
  35. Ralston, S.H. (2002) Genetic control of susceptibility to osteoporosis. J.Clin.Endocrinol.Metab. 87: 2460–2466.PubMedCrossRefGoogle Scholar
  36. Reginster, J.Y., et al. (2005) Strontium ranelate reduces the risk of nonvertebral fractures in post-menopausal women with osteoporosis: TROPOS study. J.Clin.Endocrinol.Metab.Google Scholar
  37. Riggs, B.L., Melton, L.J., III (1986) Involutional osteoporosis. N.Engl.J Med. 314: 1676–1686.PubMedCrossRefGoogle Scholar
  38. Riggs, B.L., Khosla, S., Melton, L.J., 3rd. (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to boneloss in aging men. J Bone Miner Res. 13: 763–73.PubMedCrossRefGoogle Scholar
  39. Rossouw, J.E., et al. (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288: 321–33.PubMedCrossRefGoogle Scholar
  40. Rudman, D., Feller, A.G., Nagraj, H.S., Gergans, G.A., Lalitha, P.Y., Goldberg, A.F., Schlenker, R.A., Cohn, L., Rudman, I.W., Mattson, D.E. (1990) Effects of human growth hormone in men over 60 years old. N.Engl.J.Med. 323: 1–6.PubMedCrossRefGoogle Scholar
  41. Slovik, D.M., et al. (1981) Deficient production of 1,25-dihydroxyvitamin D in elderly osteoporotic patients. The New England Journal of Medicine 305: 372–374.PubMedCrossRefGoogle Scholar
  42. Stenderup, K., Justesen, J., Clausen, C., Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells Bone 33: 919–927.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Moustapha Kassem
    • 1
  • Kim Brixen
    • 1
  1. 1.Department of Endocrinology and MetabolismOdense University Hospital and University of Southern DenmarkKloevervaenget 6Denmark

Personalised recommendations