Advertisement

Slowing down age-related muscle loss and sarcopenia

  • P. Noirez
  • G. Butler-Browne
Chapter

Abstract

The maintenance of posture is the result of an equilibrium between the actions of the muscle groups on either side of the joints. A failure in this process therefore stems from a disequilibrium between the muscle groups of one or several joints, originating from muscular weakness, which could even cause a person to fall. These well known mechanical characteristics have guided research towards our current knowledge of the molecular mechanisms involved in muscular contraction and help us understand how muscle is affected by aging

Keywords

sarcopenia fraility energy aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abete, P., Ferrara, N., Cacciatore, F., Sagnelli, E., Manzi, M., Carnovale, V., Calabrese, C., de Santis, D., Testa, G., Longobardi, G., Napoli, C. and Rengo, F. (2001) High level of physical activity preserves the cardioprotective effect of preinfarction angina in elderly patients. J.Am.Coll.Cardiol., 38: 1357–1365.PubMedCrossRefGoogle Scholar
  2. Allen, D.L., Roy, R.R. and Edgerton, V.R. (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve., 22: 1350–1360.PubMedCrossRefGoogle Scholar
  3. Beere, P.A., Russell, S.D., Morey, M.C., Kitzman, D.W. and Higginbotham, M.B. (1999) Aerobic exercise training can reverse age-related peripheral circulatory changes in healthy older men. Circulation., 100: 1085–1094.PubMedGoogle Scholar
  4. Bischoff, R. and Heintz, C. (1994) Enhancement of skeletal muscle regeneration. Dev.Dyn., 201: 41–54.PubMedGoogle Scholar
  5. Bloomfield, S.A. (1997) Changes in musculoskeletal structure and function with prolonged bed rest. Med.Sci.Sports Exerc., 29: 197–206.PubMedGoogle Scholar
  6. Bonavaud, S., Agbulut, O., Nizard, R., D’honneur, G., Mouly, V. and Butler-Browne, G. (2001) A discrepancy resolved: Human satellite cells are not preprogrammed to fast and slow lineages. Neuromuscul.Disord., 11: 747–752.PubMedCrossRefGoogle Scholar
  7. Butler-Browne, G.S., Eriksson, P.O., Laurent, C. and Thornell, L.E. (1988) Adult human masseter muscle fibers express myosin isozymes characteristic of development. Muscle Nerve., 11: 610–620.PubMedCrossRefGoogle Scholar
  8. Chabi, B., Adhihetty, P.J., Ljubicic, V. and Hood, D.A. (2005) How is mitochondrial biogenesis affected in mitochondrial disease? Med.Sci.Sports Exerc., 37: 2102–2110.PubMedCrossRefGoogle Scholar
  9. Cheung, K., Hume, P. and Maxwell, L. (2003) Delayed onset muscle soreness : Treatment strategies and performance factors. Sports Med., 33: 145–164.PubMedCrossRefGoogle Scholar
  10. Decary, S., Mouly, V., Hamida, C.B., Sautet, A., Barbet, J.P. and Butler-Browne, G.S. (1997) Replicative potential and telomere length in human skeletal muscle: Implications for satellite cell-mediated gene therapy. Hum.Gene Ther., 8: 1429–1438.PubMedGoogle Scholar
  11. Decary, S., Hamida, C.B., Mouly, V., Barbet, J.P., Hentati, F. and Butler-Browne, G.S. (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul.Disord., 10: 113–120.PubMedCrossRefGoogle Scholar
  12. Degens, H. (1998) Age-related changes in the microcirculation of skeletal muscle. Adv.Exp.Med.Biol., 454: 343–348.PubMedGoogle Scholar
  13. Delbono, O. (2003) Neural control of aging skeletal muscle. Aging Cell., 2: 21–29.PubMedCrossRefGoogle Scholar
  14. Dusterhoft, S. and Pette, D. (1993) Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions. Differentiation., 53: 25–33.PubMedCrossRefGoogle Scholar
  15. Edom, F., Mouly, V., Barbet, J. P., Fiszman, M. Y. and Butler-Browne, G.S. (1994) Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains. Dev.Biol., 164: 219–229.PubMedCrossRefGoogle Scholar
  16. Feldman, J.L. and Stockdale, F.E. (1991) Skeletal muscle satellite cell diversity: Satellite cells form fibers of different types in cell culture. Dev.Biol., 143: 320–334.PubMedCrossRefGoogle Scholar
  17. Frontera, W.R., Suh, D., Krivickas, L.S., Hughes, V.A., Goldstein, R. and Roubenoff, R. (2000) Skeletal muscle fiber quality in older men and women. Am.J.Physiol.Cell.Physiol., 279: C611–8.PubMedGoogle Scholar
  18. Fulle, S., Protasi, F., Di Tano, G., Pietrangelo, T., Beltramin, A., Boncompagni, S., Vecchiet, L. and Fano, G. (2004) The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp.Gerontol., 39: 17–24.PubMedCrossRefGoogle Scholar
  19. Gielen, S., Schuler, G. and Hambrecht, R. (2001) Exercise training in coronary artery disease and coronary vasomotion. Circulation., 103: E1–E6PubMedGoogle Scholar
  20. Gosselin, L.E., Martinez, D.A., Vailas, A.C. and Sieck, G.C. (1994) Passive length-force properties of senescent diaphragm: Relationship with collagen characteristics. J.Appl.Physiol., 76: 2680–2685.PubMedGoogle Scholar
  21. Haddad, F. and Adams, G.R. (2005) Aging sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J.Appl.Physiol.Google Scholar
  22. Hakim, A.A., Curb, J.D., Petrovitch, H., Rodriguez, B.L., Yano, K., Ross, G.W., White, L.R. and Abbott, R.D. (1999) Effects of walking on coronary heart disease in elderly men: The honolulu heart program. Circulation., 100: 9–13.PubMedGoogle Scholar
  23. Harley, C.B., Futcher, A.B. and Greider, C.W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature., 345: 458–460.PubMedCrossRefGoogle Scholar
  24. Hawke, T.J. and Garry, D.J. (2001) Myogenic satellite cells: Physiology to molecular biology. J.Appl.Physiol., 91: 534–551.PubMedGoogle Scholar
  25. Hepple, R.T., Mackinnon, S.L., Goodman, J.M., Thomas, S.G. and Plyley, M.J. (1997) Resistance and aerobic training in older men: Effects on VO2peak and the capillary supply to skeletal muscle. J.Appl.Physiol., 82: 1305–1310.PubMedCrossRefGoogle Scholar
  26. Jarvinen, T.A., Jarvinen, T.L., Kaariainen, M., Kalimo, H. and Jarvinen, M. (2005) Muscle injuries: Biology and treatment. Am.J.Sports Med., 33: 745–764.PubMedCrossRefGoogle Scholar
  27. Kadi, F. (2000) Adaptation of human skeletal muscle to training and anabolic steroids. Acta Physiol.Scand.Suppl., 646: 1–52.PubMedGoogle Scholar
  28. Kadi, F. and Thornell, L.E. (2000) Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem.Cell Biol., 113: 99–103.PubMedCrossRefGoogle Scholar
  29. Klapper, W., Parwaresch, R. and Krupp, G. (2001) Telomere biology in human aging and aging syndromes. Mech.Ageing Dev., 122: 695–712.PubMedCrossRefGoogle Scholar
  30. Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W. A., Morrow, J. D., Van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C. and Prolla, T.A. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science., 309: 481–484.PubMedCrossRefGoogle Scholar
  31. Le Page, C., Riou, B. and Besse, S. (2002) Vieillissement du muscle squelettique : Effet de l’exercice physique. Age & Nutrition., 13: 162–177.Google Scholar
  32. Lexell, J., Taylor, C.C. and Sjostrom, M. (1988) What is the cause of the ageing atrophy? total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J.Neurol.Sci., 84: 275–294.PubMedCrossRefGoogle Scholar
  33. Lindman, R., Eriksson, A. and Thornell, L.E. (1991) Fiber type composition of the human female trapezius muscle: Enzyme-histochemical characteristics. Am.J.Anat., 190: 385–392.PubMedCrossRefGoogle Scholar
  34. Mauro, A. (1961) Satellite cell of skeletal muscle fibers. J.Biophys.Biochem.Cytol., 9: 493–495.PubMedCrossRefGoogle Scholar
  35. Meijer, E.P., Goris, A.H., van Dongen, J.L., Bast, A. and Westerterp, K.R. (2002) Exercise-induced oxidative stress in older adults as a function of habitual activity level. J.Am.Geriatr.Soc., 50: 349–353.PubMedCrossRefGoogle Scholar
  36. Monahan, K.D., Tanaka, H., Dinenno, F.A. and Seals, D.R. (2001) Central arterial compliance is associated with age- and habitual exercise-related differences in cardiovagal baroreflex sensitivity. Circulation., 104: 1627–1632.PubMedGoogle Scholar
  37. Mouly, V., Aamiri, A., Bigot, A., Cooper, R.N., Di Donna, S., Furling, D., Gidaro, T., Jacquemin, V., Mamchaoui, K., Negroni, E., Perie, S., Renault, V., Silva-Barbosa, S.D. and Butler-Browne, G.S. (2005) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol.Scand., 184: 3–15.PubMedCrossRefGoogle Scholar
  38. Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E.R., Sweeney, H.L. and Rosenthal, N. (2001) Localized igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat.Genet., 27: 195–200.PubMedCrossRefGoogle Scholar
  39. Olovnikov, A.M. (1973) A theory of marginotomy. the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J.Theor.Biol., 41: 181–190.PubMedCrossRefGoogle Scholar
  40. Payne, A.M., Zheng, Z., Messi, M.L., Milligan, C.E., Gonzalez, E. and Delbono, O. (2006) Motor neurone targeting of IGF-1 prevents specific force decline in ageing mouse muscle. J.Physiol., 570: 283–294.PubMedGoogle Scholar
  41. Pedrosa-Domellof, F., Eriksson, P.O., Butler-Browne, G.S. and Thornell, L.E. (1992) Expression of alpha-cardiac myosin heavy chain in mammalian skeletal muscle. Experientia., 48: 491–494.PubMedCrossRefGoogle Scholar
  42. Petersen, A.M. and Pedersen, B.K. (2005) The anti-inflammatory effect of exercise. J.Appl.Physiol., 98: 1154–1162.PubMedCrossRefGoogle Scholar
  43. Ramamurthy, B., Jones, A.D. and Larsson, L. (2003) Glutathione reverses early effects of glycation on myosin function. Am.J.Physiol.Cell.Physiol., 285: C419–24.PubMedGoogle Scholar
  44. Renaud, M. and Bherer, L. (2005) Impact on physical fitness on cognitive aging. Psychol.Neuropsychiatr.Vieil., 3: 199–206.PubMedGoogle Scholar
  45. Renault, V., Piron-Hamelin, G., Forestier, C., DiDonna, S., Decary, S., Hentati, F., Saillant, G., Butler-Browne, G.S. and Mouly, V. (2000) Skeletal muscle regeneration and the mitotic clock. Exp.Gerontol., 35: 711–719.PubMedCrossRefGoogle Scholar
  46. Renault, V., Thornell, L.E., Eriksson, P.O., Butler-Browne, G. and Mouly, V. (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell., 1: 132–139.PubMedCrossRefGoogle Scholar
  47. Rosenblatt, J.D., Parry, D.J. and Partridge, T.A. (1996) Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation., 60: 39–45.PubMedCrossRefGoogle Scholar
  48. Ryan, M. and Ohlendieck, K. (2004) Excitation-contraction uncoupling and sarcopenia. Basic Appl Myol., 14(3): 141–154.Google Scholar
  49. Ryan, M., Butler-Browne, G., Erzen, I., Mouly, V., Thornell, L.E., Wernig, A. and Ohlendieck, K. (2003) Persistent expression of the alpha1S-dihydropyridine receptor in aged human skeletal muscle: Implications for the excitation-contraction uncoupling hypothesis of sarcopenia. Int.J.Mol.Med., 11: 425–434.PubMedGoogle Scholar
  50. Schmalbruch, H. and Hellhammer, U. (1976) The number of satellite cells in normal human muscle. Anat.Rec., 185: 279–287.PubMedCrossRefGoogle Scholar
  51. Shavlakadze, T. and Grounds, M.D. (2003) Therapeutic interventions for age-related muscle wasting importance of innervation and exercice for preventing. In Modulating Aging and Longevity (Rattan, S. I. S., ed.), Kluwer Academic Publishers, The Netherlands, 1–28.Google Scholar
  52. Soukup, T., Pedrosa-Domellof, F. and Thornell, L.E. (2003) Intrafusal fiber type composition of muscle spindles in the first human lumbrical muscle. Acta Neuropathol.(Berl)., 105: 18–24.Google Scholar
  53. Stal, P., Eriksson, P.O., Schiaffino, S., Butler-Browne, G.S. and Thornell, L.E. (1994) Differences in myosin composition between human oro-facial, masticatory and limb muscles: Enzyme-, immunohisto- and biochemical studies. J.Muscle Res.Cell.Motil., 15: 517–534.PubMedCrossRefGoogle Scholar
  54. Stratton, J.R., Levy, W.C., Cerqueira, M.D., Schwartz, R.S. and Abrass, I.B. (1994) Cardiovascular responses to exercise. effects of aging and exercise training in healthy men. Circulation., 89: 1648–1655.PubMedGoogle Scholar
  55. Taddei, S., Galetta, F., Virdis, A., Ghiadoni, L., Salvetti, G., Franzoni, F., Giusti, C. and Salvetti, A. (2000) Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes. Circulation., 101: 2896–2901.PubMedGoogle Scholar
  56. Tanaka, H., Dinenno, F.A., Monahan, K.D., Clevenger, C.M., DeSouza, C.A. and Seals, D.R. (2000) Aging, habitual exercise, and dynamic arterial compliance. Circulation., 102: 1270–1275.PubMedGoogle Scholar
  57. Thornell, L.E., Lindstrom, M., Renault, V., Mouly, V. and Butler-Browne, G.S. (2003) Satellite cells and training in the elderly. Scand.J.Med.Sci.Sports., 13: 48–55.PubMedCrossRefGoogle Scholar
  58. Tome, F.M. and Fardeau, M. (1986) Nuclear changes in muscle disorders. Methods Achiev.Exp.Pathol., 12: 261–296.PubMedGoogle Scholar
  59. Vignaud, A., Noirez, P., Besse, S., Rieu, M., Barritault, D. and Ferry, A. (2003) Recovery of slow skeletal muscle after injury in the senescent rat. Exp.Gerontol., 38: 529–537.PubMedCrossRefGoogle Scholar
  60. Yu, J.G., Carlsson, L. and Thornell, L.E. (2004) Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: An ultrastructural and immunoelectron microscopic study. Histochem.Cell Biol., 121: 219–227.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • P. Noirez
    • 1
    • 2
  • G. Butler-Browne
    • 1
  1. 1.Inserm U787Université Pierre et Marie Curie
  2. 2.Ufr StapsUniversité René DescartesParis 5

Personalised recommendations