Advertisement

Progress and development in Parkinson disease therapy

  • Carsten R. Bjarkam
  • Jens C. SØrensen
Chapter

Abstract

Parkinson disease (PD) is a common neurodegenerative disorder affecting 1% of the population aged seventy or more. The causes of PD remain obscure, but basic and clinical research has led to a deep insight into PD pathophysiology, identifying several points of intervention for emerging therapeutic strategies enabling modulation of neural circuits and replacement of lost neurons, neurotransmitters, and neurotrophic factors. ∈dent In this chapter we aim, accordingly, to present a overview of the current knowledge on PD pathophysiology and demonstrate how this knowledge provides targets for current and future pharmacological and surgical treatment strategies towards PD

Keywords

Basal ganglia circuitry Current & future interventions Neuroprotection Pharmacological treatment Surgical treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agid, Y., Ahlskog, E., Albanese, A., Calne, D., Chase, T., De Yebenes, J., Factor, S., Fahn, S., Gershanik, O., Goetz, C., Koller, W., Kurth, M., Lang, A., Lewitt, P., Marsden, D., Melamed, E., Michel, P.P., Mizuno, Y., Obeso, J., Oertel, W., Olanow, W., Poewe, W., Pollak, P., Przedzorski, S., Quinn, N., Raisman-Vozari, R., Rajput, A., Stocchi, F. and Tolosa, E. (1999) Levodopa in the treatment of Parkinson’s disease: a consensus meeting. Mov Disord, 14: 911–913.PubMedCrossRefGoogle Scholar
  2. Albin, R.L., Young, A.B. and Penney, B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci, 12: 366–375.PubMedCrossRefGoogle Scholar
  3. Alexander, G.E. and Crutcher, M.D. (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci, 13: 266–271.PubMedCrossRefGoogle Scholar
  4. Alexander, G.E. (1994) Basal ganglia-thalamocortical circuits: Their role in control of movements. J Clin Neurophysiol, 11: 420–431.PubMedCrossRefGoogle Scholar
  5. Alvarez, L., Macias, R., Lopez, G., Alvarez, E., Pavon, N., Rodriguez-Oroz, M.C., Juncos, J.L., Maragoto, C., Guridi, J., Litvan, I., Tolosa, E.S., Koller, W., Vitek, J., DeLong, M.R. and Obeso, J.A. (2005) Bilateral subthalamotomy in Parkinson’s disease: initial and long-term response. Brain, 128: 570–583.PubMedCrossRefGoogle Scholar
  6. Anderson, K.E. and Mullins, J. (2003) Behavioral changes associated with deep brain stimulation surgery for Parkinson’s disease. Curr Neurol Neurosci Rep, 3: 306–313.PubMedGoogle Scholar
  7. Azzouz, M., Martin-Rendon, E., Barber, R.D., Mitrophanous, K.A., Carter, E.E., Rohll, J.B., Kingsman, S.M., Kingsman, A.J. and Mazarakis, N.D. (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci, 22: 10302–10312.PubMedGoogle Scholar
  8. Azzouz, M., Ralph, S., Wong, L.-F., Day, D., Askham, Z., Barber, R.D., Mitrophanous, K.A., Kingsman, S.M. and Mazarakis, N.D. (2004) Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. NeuroReport, 15(6): 985–990.PubMedCrossRefGoogle Scholar
  9. Bara-Jimenez, W., Sherzai, A., Dimitrova, T., Favit, A., Bibbiani, F., Gillespie, M., Morris, M.J., Mouradian, M.M. and Chase, T.N. (2003) Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology, 61: 293–296.PubMedGoogle Scholar
  10. Benner, E.J., Mosley, R.L., Destache, C.J., Lewis, T.B., Jackson-Lewis, V., Gorantla, S., Nemachek, C., Green, S.R., Przedborski, S. and Gendelman, H.E. (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. PNAS, 101(25): 9435–9440.PubMedCrossRefGoogle Scholar
  11. Bensadoun, J.C., Deglon, N., Tseng, J.L., Ridet, J.L., Zurn, A.D. and Aebischer, P. (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol, 164: 15–24.PubMedCrossRefGoogle Scholar
  12. Bernheimer, H., Birkmeyer, W., Hornykiewicz, O., Jellinger, K. and Seitelberger, F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci, 20: 415–455.PubMedCrossRefGoogle Scholar
  13. Bertler, A. and Rosengren, E. (1959) Occurence and distribution of catecholamines in brain. Acta Physiologica Scandinavica, 47: 350–361.PubMedGoogle Scholar
  14. Björklund, A., Dunnett, S.B., Brundin, P., Stoessl, A.J., Freed, C.R., Breeze, R.E., Levivier, M., Peschanski, M., Studer, L. and Barker, R. (2003) Neural transplantation for the treatment of Parkinson’s disease. Lancet Neurol, 2: 437–445.PubMedCrossRefGoogle Scholar
  15. Bjarkam, C.R., Sørensen, J.C., Sunde, N.Å., Geneser, F.A. and Østergaard, K. (2001) New strategies for the treatment of Parkinson’s disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology, 2: 193–207.PubMedCrossRefGoogle Scholar
  16. Burton, E.A., Glorioso, J.C. and Fink, D.J. (2003) Gene therapy progress and prospects: Parkinson’s disease. Gene Therapy, 10: 1721–1727.PubMedCrossRefGoogle Scholar
  17. Carlsson, A., Lindqvist, M., Magnuson, T. and Waldeck, B. (1958) On the presence of 3-hydroxythyramin in the brain. Science, 127: 471–471.PubMedCrossRefGoogle Scholar
  18. Carlsson, T., Winkler, C., Burger, C., Muzyczka, N., Mandel, R.J., Cenci, A., Björklund, A. and Kirik, D. (2005) Reversal of dyskinesias in an animal model of Parkinson’s disease by continuous L-DOPA delivery using rAAV vectors. Brain, 128: 559–569.PubMedCrossRefGoogle Scholar
  19. Carlsson, A. (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacological Reviews, 11: 490–493.PubMedGoogle Scholar
  20. Chesselet, M.-F. and Delfs, J.M. (1996) Basal ganglia and movement disorders: an update. Trends Neurosci, 19: 417–422.PubMedGoogle Scholar
  21. Chiocca, E.A. (2003) Gene therapy: a primer for neurosurgeons. Neurosurgery, 53: 364–373.PubMedCrossRefGoogle Scholar
  22. Clarke, C.E. (2004) Neuroprotection and pharmacotherapy for motor symptoms in Parkinson’s disease. Lancet Neurology, 3: 466–474.PubMedCrossRefGoogle Scholar
  23. Crocker, S.J., Wigle, N., Liston, P., Thompson, C.S., Lee, C.J., Xu, D., Roy, S., Nicholson, D.W., Park, D.S., MacKenzie, A., Korneluk, R.G. and Robertson, G.S. (2001) NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson’s disease. Eur J Neurosci, 14: 391–400.PubMedCrossRefGoogle Scholar
  24. Dauer, W. and Przedborski, S. (2003) Parkinson’s disease: mechanisms and models. Neuron, 39: 889–909.PubMedCrossRefGoogle Scholar
  25. DeLong, M.R. (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci, 13: 281–285.PubMedCrossRefGoogle Scholar
  26. During, M.J., Naegele, J.R., O’Malley, K.L. and Geller, A.I. (1994) Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science, 266: 1399–1403.PubMedCrossRefGoogle Scholar
  27. During, M.J., Samulski, R.J., Elsworth, J.D., Kaplitt, M.G., Leone, P., Xiao, X., LI, J., Freese, A., Taylor, J.R., Roth, R.H., Sladek, J.R., Jr. O’Malley, K.L. and Redmond, D.E., Jr. (1998) In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther, 5: 820–827.PubMedCrossRefGoogle Scholar
  28. During, M.J., Kaplitt, M.G., Stern, M.B. and Eidelberg, D. (2001) Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther, 12: 1589–91.PubMedGoogle Scholar
  29. Duvoisin, R.C. and Yahr, M.D. (1965) Encephalities and Parkinsonism. Arch Neurol, 12: 227.PubMedGoogle Scholar
  30. Duvoisin, R.C. (1999) Genetic and environmental factors in Parkinson’s disease In: Stern GM (ed) Parkinson’s disease: Advances in Neurology Lippincott Williams & Wilkins, Philadelphia, 80: 161–163.Google Scholar
  31. Eberhardt, O., Coelln, R.V., Kugler, S., Lindenau, J., Rathke-Hartlieb, S., Gerhardt, E., Haid, S., Isenmann, S., Gravel, C., Srinivasan, A., Bahr, M., Weller, M., Dichgans, J. and Schulz, J.B. (2000) Protection by synergistic effects of adeno-virus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci, 20: 9126–9134.PubMedGoogle Scholar
  32. Fahn, S. and Cohen, G. (1992) The oxidant strees hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol, 32: 805–812.CrossRefGoogle Scholar
  33. Forno, L.S. (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol, 55: 259–272.PubMedGoogle Scholar
  34. Freed, C.R., Greene, P.E., Breeze, R.E., Tsai, W.Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J.Q., Eidelberg, D. and Fahn, S. (2003) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med, 344: 710–719.CrossRefGoogle Scholar
  35. Freeman, W. (1925) The pathology of paralysis agitans. Ann Clin Med, 4: 106–16.Google Scholar
  36. Gill, S.S., Patel, N.K., Hotton, G.R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D.J., Svendsen, C.N. and Heywood, P. (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nature Medicine, 9: 589–595.PubMedCrossRefGoogle Scholar
  37. Güldenpfennig, W., Poole, K.H., Sommerville, K.W. and Boroojerdi, B. (2005) Safety, tolerability, and efficacy of continuous transdermal dopaminergic stimulation with rotigotine patch in early stage idiopathic Parkinson disease. Clin Neuropharmacol, 28: 106–110.PubMedCrossRefGoogle Scholar
  38. Greenfield, J.G. and Bosanquet, F.D. (1953) The brain-stem lesions in parkinsonism. J Neurol Neurosurg Psychiatry, 16: 213–26.PubMedGoogle Scholar
  39. Grondin, R., Bedard, P.J., Hadj Tahar, A., Gregoire, L., Mori, A. and Kase, H. (1999) Antiparkinson effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology, 52: 1673–1677.PubMedGoogle Scholar
  40. Haas, R.H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R. and Shults, C.W. (1995) Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol, 37: 714–22.PubMedCrossRefGoogle Scholar
  41. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J.L., Fraser, C.C., Cavazzana-Calvo, M. and Fischer, A. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med, 348: 255–256.PubMedCrossRefGoogle Scholar
  42. Hammerstad, J. and Hogarth, P. (2001) Parkinson’s disease: Surgical options. Current Neurology and Neuroscience Reports, 1: 313–319.PubMedGoogle Scholar
  43. Hashimoto, M., Rockenstein, E., Mante, M., Crews, L., Bar-On, P., Gage, F.H., Marr, R. and Masliah, E. (2004) An antiaggregation gene therapy strategy for Lewy body disease utilizing β-synuclein lentivirus in a transgenic model. Gene Therapy, 11: 1713–1723.PubMedCrossRefGoogle Scholar
  44. Hauser, R.A., Hubble, J.P. and Truong, D.D. (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology, 61: 297–303.PubMedGoogle Scholar
  45. Herrero, M.-T., Barcia, C. and Navarro, J.M. (2002) Functional anatomy of thalamus and basal ganglia. Child’s Nerv System, 18: 386–404.CrossRefGoogle Scholar
  46. Hsich, G., Sena-Esteves, M. and Breakefield, X.O. (2002) Critical issues in gene therapy for neurologic disease. Hum Gene Ther, 13: 579–604.PubMedCrossRefGoogle Scholar
  47. Jenner, P. and Olanow, C.W. (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology, 47: 161–170.Google Scholar
  48. Jenner, P. (2003a) Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson’s disease. Curr Opin Neurol, 16(suppl 1): S3–S7.CrossRefGoogle Scholar
  49. Jenner, P. (2003b) A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD. Neurology, 61: S32–S38.Google Scholar
  50. Kanda, T., Jackson, M.J., Smith, L.A., Pearce, R.K., Nakamura, J., Kase, H., Kuwana, Y. and Jenner, P. (1998) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol, 43: 507–513.PubMedCrossRefGoogle Scholar
  51. Kanda, T., Jackson, M.J., Smith, L.A., Pearce, R.K., Nakamura, J., Kase, H., Kuwana, Y. and Jenner, P. (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol, 162: 321–327.PubMedCrossRefGoogle Scholar
  52. Kankkunen, T., Huupponen, I., Lahtinen, K., Sundell, M., Ekman, K., Kontturi, K. and Hirvonen, J. (2002) Improved stability and release control of levodopa and metaraminol using ion-exchange fibers and transdermal iontophoresis. Eur J Pharm Sci, 16(4–5): 273–280.PubMedCrossRefGoogle Scholar
  53. Kase, H. (2003) Industry forum: Progress in pursuit of therapeutic A2A antagonist. Neurology, 61(suppl 6): S97–S100.PubMedGoogle Scholar
  54. Kirik, D., Rosenblad, C., Bjorklund, A. and Mandel, R.J. (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci, 20: 4686–4700.PubMedGoogle Scholar
  55. Kirik, D., Georgievska, B., Burger, C., Winkler, C., Muzyczka, N., Mandel, R.J. and Bjorklund, A. (2002) Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc Natl Acad Sci USA, 99: 4708–4713.PubMedCrossRefGoogle Scholar
  56. Kish, S.J., Shannak, H.K. and Hornykiewicz, O. (1988) Uneven pattern of dopamine loss in the striatum of patients with Parkinson’s disease-pathophysiologic and clinical implications. N Engl J Med, 318: 876–880.PubMedCrossRefGoogle Scholar
  57. Koga, K., Kurokawa, M., Ochi, M., Nakamura, J. and Kuwana, Y. (2000) Adenosine A(2A) antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drug in hemi-Parkinsonian rats. Eur J Pharmacol, 408: 249–255.PubMedCrossRefGoogle Scholar
  58. Kordower, J.H., Freeman, T.B., Snow, B.J., Vingerhoets, F.J., Mufson, E.J., Sanberg, P.R., Hauser, R.A., Smith, D.A., Nauert, G.M., Perl, D.P. and Olanow, C.W. (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med, 332(17): 1118–1124.PubMedCrossRefGoogle Scholar
  59. Kordower, J.H., Emborg, M.E., Bloch, J., Ma, S.Y., Chu, Y., Leventhal, L., McBride, J., Chen, E.Y., Palfi, S., Roitberg, B.Z., Brown, W.D., Holden, J.E., Pyzalski, R., Taylor, M.D., Carvey, P., Ling, Z., Trono, D., Hantraye, P., Deglon, N. and Aebischer, P. (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science, 290: 767–772.PubMedCrossRefGoogle Scholar
  60. Krüger, R. (2004) Genes in familial parkinsonism and their role in sporadic Parkinson’s disease. J Neurol, 251(suppl 6): VI/2–VI/6.Google Scholar
  61. Lang, A.E. and Lozano, A.M. (1998) Parkinson’s disease: Second of two parts. N Engl J Med, 339: 1130–1143.PubMedCrossRefGoogle Scholar
  62. Langston, J.W. (2005) The promise of stem cells in Parkinson disease. J Clin Invest, 115: 23–25.PubMedCrossRefGoogle Scholar
  63. Lewitt, P.A. and Nyholm, D. (2004) New developments in levodopa therapy. Neurology, 62(suppl 1): S9–S16.PubMedGoogle Scholar
  64. Lindgren, P., von Campenhausen, S., Spottke, E., Siebert, U. and Dodel, R. (2005) Cost of Parkinson’s disease in Europe. Eur J Neurol, 12(suppl 1): 68–73.PubMedCrossRefGoogle Scholar
  65. Lindvall, O., Kokaia, Z. and Martinez-Serrano, A. (2004) Stem cell therapy for human neurodegenerative disorders – how to make it work. Nature Med, 10(suppl 10): S42–S50.PubMedGoogle Scholar
  66. Luo, J., Kaplitt, M.G., Fitzsimons, H.L., Zuzga, D.S., Liu, Y., Oshinsky, M.L. and During, M.J. (2002) Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science, 298: 425–429.PubMedCrossRefGoogle Scholar
  67. Marsden, C.D. (1994) Parkinson’s disease. J Neurol Neurosurg Psychiatr, 57: 672–681.PubMedGoogle Scholar
  68. Martinez-Serrano, A., Björklund, A. (1997) Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci, 20: 530–538.PubMedCrossRefGoogle Scholar
  69. Masliah, E., Rockenstein, E., Adame, A., Alford, M., Crews, L., Hashimoto, M., Seubert, P., Lee, M., Goldstein, J., Chilcote, T., Games, D. and Schenk, D. (2005) Effects of α-synuclein immunization in a mouse model of Parkinson’s disease. Neuron, 46: 857–868.PubMedCrossRefGoogle Scholar
  70. McGrath, J., Lintz, E., Hoffer, B.J., Gerhardt, G.A., Quintero, E.M. and Granholm, A.C. (2002) Adeno-associated viral delivery of GDNF promotes recovery of dopaminergic phenotype following a unilateral 6-hydroxydopamine lesion. Cell Transplant, 11: 215–227.PubMedGoogle Scholar
  71. Mercuri, N.B. and Bernardi, G. (2005) The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy. Trends in Pharmacol Sci, 26(7): 341–344.CrossRefGoogle Scholar
  72. Mochizuki, H., Hayakawa, H., Migita, M., Shibata, M., Tanaka, R., Suzuki, A., Shimo-Nakanishi, Y., Urabe, T., Yamada, M., Tamayose, K., Shimada, T., Miura, M. and Mizuno, Y. (2001) An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson’s disease. Proc Natl Acad Sci USA, 98: 10918–10923.PubMedCrossRefGoogle Scholar
  73. Muramatsu, S., Fujimoto, K.I., Ikeguchi, K., Shizuma, N., Kawasaki, K., Ono, F., Shen, Y., Wang, L., Mizukami, H., Kume, A., Matsumura, M., Nagatsu, I., Urano, F., Ichinose, H., Nagatsu, T., Terao, K., Nakano, I. and Ozawa, K. (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther, 13: 345–354.PubMedCrossRefGoogle Scholar
  74. Mutch, W.J., Dingwall-Fordyce, I., Downie, A.W., Paterson, J.G. and Roy, S.K. (1986) Parkinson’s disease in a Scottish city. Br Med J, 292: 534–536.Google Scholar
  75. Nakagawa-Hattori, Y., Yoshino, H. and Kondo, T. (1992) Is Parkinson’s disease a mitochondrial disorder?. J Neurol Sci, 107: 29–33.PubMedCrossRefGoogle Scholar
  76. Natsume, A., Mata, M., Goss, J., Huang, S., Wolfe, D., Oligino, T., Glorios, J. and Fink, D.J. (2001) Bcl-2 and GDNF delivered by HSV-mediated gene transfer act additively to protect dopaminergic neurons from 6-OHDA-induced degeneration. Exp Neurol, 169: 231–238.PubMedCrossRefGoogle Scholar
  77. Nisipeanu, P., Paleacu, D. and Korczyn, A.D. (1997) Infectious and postinfectious parkinsonism.In: Watts RL and Koller WC (eds) Movement disorders, neurologic principles and practice, pp 307–313.New York.Google Scholar
  78. Nomoto, M. (2003) Clinical pharmacology and neuroprotection in Parkinson’s disease. Parkinsonism & Related Disorders, 9: S55–S58.CrossRefGoogle Scholar
  79. Nyholm, D. and Aquilonius, S.-M. (2004) Levodopa infusion therapy in Parkinson disease. Clin Neuropharmacol, 27(5): 245–256.PubMedCrossRefGoogle Scholar
  80. Offen, D., Hochman, A., Gorodin, S., Ziv, I., Shirvan, A., Barzilai, A. and Melamed, E. (1999) Oxidative stress and neuroprotection in Parkinson’s disease: Implications from studies on dopamine-induced apoptosis.In: Stern GM (ed) Parkinson’s disease: Advances in Neurology, Lippincott Williams & Wilkins, Philadelphia, 80: 265–269.Google Scholar
  81. Olanow, C.W. and Stocchi, F. (2004) COMT inhibitors in Parkinson’s disease. Neurology, 62(suppl 1): S72–S81.PubMedGoogle Scholar
  82. Olanow, C.W., Goetz, C.G., Kordower, J.H., Stoessl, A.J., Sossi, V., Brin, M.F., Shannon, K.M., Nauert, G.M., Perl, D.P., Godbold, J. and Freeman, T.B. (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol, 54: 403–414.PubMedCrossRefGoogle Scholar
  83. Palfi, S., Leventhal, L., Chu, Y., Ma, S.Y., Emborg, M., Bakay, R., Deglon, N., Hantraye, P., Aebischer, P. and Kordower, J.H. (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci, 22: 4942–4954.PubMedGoogle Scholar
  84. Parent, A. and Hazrati, L.-N. (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev, 20: 91–127.CrossRefGoogle Scholar
  85. Parent, A. and Hazrati, L.-N. (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev, 20: 128–154.CrossRefGoogle Scholar
  86. Parkinson, J. (1817) An essay on the shaking palsy.Whittingham and Rowland, London.Google Scholar
  87. Piccini, P., Brooks, D.J., Bjorklund, A., Gunn, R.N., Grasby, P.M., Rimoldi, O., Brundin, P., Hagell, P., Rehncrona, S., Widner, H. and Lindvall, O. (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci, 2(12): 1137–1140.PubMedCrossRefGoogle Scholar
  88. Piccini, P., Lindvall, O., Bjorklund, A., Brundin, P., Hagell, P., Ceravolo, R., Oertel, W., Quinn, N., Samuel, M., Rehncrona, S., Widner, H. and Brooks, D.J. (2000) Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol, 48(5): 689–695.PubMedCrossRefGoogle Scholar
  89. Przedborski, S. (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism & Related Disorders, 11: S3–S7.CrossRefGoogle Scholar
  90. Rascol, O., Goetz, C., Koller, W., Poewe, W. and Sampaio, C. (2002) Treatment interventions for Parkinson’s disease: an evidence based assessment. Lancet, 359: 1589–1598.PubMedCrossRefGoogle Scholar
  91. Rascol, O., Brooks, D.J., Melamed, E., Oertel, W., Poewe, W., Stocchi, F., Tolasa, E. and the Largo study group (2005) Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct theraphy with Rasagiline Given Once daily study): a randomized, double-blind, parallel-group trial. Lancet, 365: 947–954.Google Scholar
  92. Rodriguez, M.C., Obeso, J.A. and Olanow, C.W. (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: A target for neuroprotection. Ann Neurol, 44(Suppl 1): S175–S188.PubMedGoogle Scholar
  93. Rybecki, B.A., Johnson, C.C., Uman, J. and Gorell, J.M. (1993) Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord, 8: 87–92.CrossRefGoogle Scholar
  94. Schenk, D. (2002) Amyloid-β immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci, 3: 824–828.PubMedCrossRefGoogle Scholar
  95. Semchuk, K., Love, E.J. and Lee, R.G. (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology, 42: 1328–1335.PubMedGoogle Scholar
  96. Shen, Y., Muramatsu, S.I., Ikeguchi, K., Fujimoto, K.I., Fan, D.S., Ogawa, M., Mizukami, H., Urabe, M., Kume, A., Nagatsu, I., Urano, F., Suzuki, T., Ichinose, H., Nagatsu, T., Monahan, J., Nakano, I. and Ozawa, K. (2000) Triple transduction with adeno-associated viral vectors expressing tyrosine hydroxlase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther, 11: 1509–1519.PubMedCrossRefGoogle Scholar
  97. Shiozaki, S., Ichikawa, S., Nakamura, J., Kitamura, S., Yamada, K. and Kuwana, Y. (1999) Actions of adenosine A(2A) antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology, 147: 90–95.PubMedCrossRefGoogle Scholar
  98. Smith, Y. and Parent, A. (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res, 453: 353–356.PubMedCrossRefGoogle Scholar
  99. Smith, Y., Parent, A., Séguéla, P. and Descarries, L. (1987) Distribution of GABA immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus). J Comp Neurol, 259: 50–65.PubMedCrossRefGoogle Scholar
  100. Stacy, M.A. and the US-005 & US-006 Investigator Group 2004) Istradefylline (KW-6002) as adjunctive therapy in patients with advanced Parkinson’s disease: a positive safety profile with supporting efficacy. Mov Disord, 19(S9): S215–S216 (P605).Google Scholar
  101. Stocchi, F. and Olanow, C.W. (2004) Continuous dopaminergic stimulation in early and advanced Parkinson’s disease. Neurology, 62(suppl 1): S56–S63.PubMedGoogle Scholar
  102. Storch, A., Hofer, A., Krüger, R., Schulz, J.B., Winkler, J. and Gerlach, M. (2004) New developments in diagnosis and treatment of Parkinson’s disease – From basic science to clinical applications. J Neurol, 251(suppl 6): VI/33–VI/38.Google Scholar
  103. Sudo, J., Iwase, H., Higashiyama, K., Kakuno, K., Miyasaka, F., Meguro, T. and Takayama, K. (2002) Elevation of plasma levels of L-dopa in transdermal administration of L-dopa-butylester in rats. Drug Dev Ind Pharm, 28: 59–65.PubMedCrossRefGoogle Scholar
  104. Sun, M., Zhang, G.R., Kong, L., Holmes, C., Wang, X., Zhang, W., Goldstein, D.S. and Geller, A.I. (2003) Correction of a rat model of Parkinson’s disease by coexpression of tyrosine hydroxylase and aromatic amino acid decarboxylase from a helper virus-free herpes simplex virus type 1 vector. Hum Gene Ther, 14: 415–424.PubMedCrossRefGoogle Scholar
  105. Suwelack, D., Hurtado-Lorenzo, A., Millan, E., Gonzalez-Nicolini, V., Wawrowsky, K., Lowenstein, P.R. and Castro, M.G. (2004) Neuronal expression of the transcription factor Gli1 using the Tα1α-tubulin promoter is neuroprotective in an experimental model of Parkinson’s Disease. Gene Therapy, 11: 1742–1752.PubMedCrossRefGoogle Scholar
  106. Tanner, C.M. (1989) The role of environmental toxins in the etiology of Parkinson’s disease. Trends Neurosci, 12: 49–54.PubMedCrossRefGoogle Scholar
  107. Tanner, C.M. and Ben-Shlomo, Y. (1999) Epidemiology of Parkinson’s disease. In: Stern GM (ed) Parkinson’s disease: Advances in Neurology, 80:265–269 Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  108. Tanner, C.M., Hubble, J.P. and Chan, P. (1997) Epidemiology and genetics of Parkinson’s disease.In: Watts RL and Koller WC (eds) Movement disorders, neurologic principles and practice, pp 137–152.New York.Google Scholar
  109. The Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med, 345: 956–963.Google Scholar
  110. Thomas, A., Iacono, D., Luciano, A., Armellino, K., Di Lorio, A. and Onofrj, M. (2004) Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry, 75: 141–143.PubMedGoogle Scholar
  111. Tretiakoff, C. (1919) Contribution a l‘etude de l‘anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la pathogenie des troubles du tonus musculaires et de la maladie de Parkinson.Thesis.University of Paris.Google Scholar
  112. Tuchsen, F. and Jensen, A.A. (2000) Agricultural work and the risk of Parkinson’s disease in Denmark, 1981–1993.Scand J Work Environ Health, 26: 359–62.PubMedGoogle Scholar
  113. Von Economo, C. (1917) Encephalitis lethargica. Wien Klin Wochnschr, 30: 581.Google Scholar
  114. Walter, B.L. and Vitek, J.L. (2004) Surgical treatment for Parkinson’s disease. Lancet Neurol, 3: 719–728.PubMedCrossRefGoogle Scholar
  115. Wang, L., Muramatsu, S., Lu, Y., Ikeguchi, K., Fujimoto, K., Okada, T., Mizukami, H., Hanazono, Y., Kume, A., Urano, F., Ichinose, H., Nagatsu, T., Nakano, I. and Ozawa, K. (2002) Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson’s disease. Gene Therapy, 9: 381–389.PubMedCrossRefGoogle Scholar
  116. Wooten, G.F., Currie, L.J., Bennett, J.P., Harrison, M.B., Trugman, J.M. and Parker, W.D., Jr. (1997) Maternal inheritance in Parkinson’s disease. Ann Neurol, 41: 265–268.PubMedCrossRefGoogle Scholar
  117. Xu, K., Bastia, E. and Schwarzschild, M. (2005) Therapeutic potential of adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacology & Therapeutics, 105: 267–310.CrossRefGoogle Scholar
  118. Yasuhara, T., Shingo, T., Muraoka, K., Kobayashi, K., Takeuchi, A., Yano, A., Wenji, Y., Kameda, M., Matsui, T., Miyoshi, Y. and Date, I. (2005) Early transplantation of an encapsulated glial cell line-derived neurotrophic factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson’s disease. J Neurosurg, 102: 80–89.PubMedCrossRefGoogle Scholar
  119. Zheng, J.-S., Tang, L.-L., Zheng, S.-S., Zhan, R.-Y., Zhou, Y.-Q., Goudreau, J., Kaufman, D. and Chen, A.F. (2005) Delayed gene therapy of glial cell line-derived neurotrophic factor is efficacious in a rat model of Parkinson’s disease. Mol Brain Res, 134: 155–161.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Carsten R. Bjarkam
    • 1
  • Jens C. SØrensen
    • 2
  1. 1.Department of NeurobiologyInstitute of AnatomyUniversity of AarhusDenmark
  2. 2.Department of NeurosurgeryUniversity Hospital of AarhusAarhus

Personalised recommendations