Advertisement

Protein Aggregation in Aging and Age-Related Neurodegenerative Disorders

  • Jeffrey N. Keller
  • Qunxing Ding
Chapter
  • 927 Downloads

Abstract

The purpose of this chapter is to provide a background on the effects of aging on proteolytic pathways and protein aggregation, and to discuss the contribution of altered protease function and protein aggregation to brain function. Studies will focus on the proteasome proteolytic pathway. Lastly, these studies will also discuss the relationship between aging and age-related neurodegenerative disorders

Keywords

Aging Alzheimer’s disease lysosome neuron oxidative stress proteasome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, G., Gausz, J., Noselli, S., Kurucz, E., Ando, I. and Udvardy, A. (2004) Tissue- and developmental stage-specific changes in the subcellular localization of the 26S proteasome in the ovary of Drosophila melanogaster. Gene Expr Patterns, 4: 329–333.PubMedCrossRefGoogle Scholar
  2. Agarwal, S. and Sohal, R.S. (1994) Aging and proteolysis of oxidized proteins. Arch Biochem Biophys, 309: 24–28.PubMedCrossRefGoogle Scholar
  3. Amici, M., Lupidi, G., Angeletti, M., Fioretti, E. and Eleuteri, A.M. (2003) Peroxynitrite-induced oxidation and its effects on isolated proteasomal systems. Free Radic Biol Med, 34: 987–996.PubMedCrossRefGoogle Scholar
  4. Anselmi, B., Conconi, M., Veyrat-Durebex, C., Turlin, E., Biville, F., Alliot, J. and Friguet, B. (1998) Dietary self-selection can compensate an age-related decrease of rat liver 20 S proteasome activity observed with standard diet. J Gerontol A Biol Sci Med Sci, 53: B173–179.PubMedGoogle Scholar
  5. Auluck, P.K., Meuleener, M.C. and Bonini, N.M. (2005) Mechanisms of suppression of a-synuclein neurotoxicity by geldamycin in Drosophila. J Biol Chem, 280: 2873–2878.PubMedCrossRefGoogle Scholar
  6. Barja, G. (2002) Rate of generation of oxidative stress-related damage and animal longevity. Free Radic Biol Med, 33: 1167–1172.PubMedCrossRefGoogle Scholar
  7. Beckman, K.B. and Ames, B.N. (1998) The free radical theory of aging matures. Physiol Rev, 78: 547–581.PubMedGoogle Scholar
  8. Beedholm, R., Clark, B.F. and Rattan, S.I. (2004) Mild heat stress stimulates 20S proteasome and its 11S activator in human fibroblasts undergoing aging in vitro. Cell Stress Chaperones, 9: 49–57.PubMedGoogle Scholar
  9. Benaroudj, N., Tarcsa, E., Cascio, P. and Goldberg, A.L. (2001) The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie, 83: 311–318.PubMedCrossRefGoogle Scholar
  10. Breedholm, R., Clark, B.F. and Rattan, S.I. (2004) Mild heat stress stimulates 20S proteasome and its 11S activator in human fibroblasts undergoing aging in vitro. Cell Stress Chaperones, 9: 49–57.Google Scholar
  11. Bulteau, A.L., Petropoulos, I. and Friguet, B. (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol, 35: 767–777.PubMedCrossRefGoogle Scholar
  12. Bulteau, A.L., Szweda, L.I. and Friguet, B. (2002) Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys, 397: 298–304.PubMedCrossRefGoogle Scholar
  13. Caballero, M., Liton, P.B., Challa, P., Epstein, D.L. and Gonzalez, P. (2004) Effects of donor age on proteasome activity and senescence in trabecular meshwork cells. Biochem Biophys Res Commun, 323: 1048–1054.PubMedCrossRefGoogle Scholar
  14. Chen, Q., Thorpe, J., Ding, Q., El-Amouri, I.S. and Keller, J.N. (2004) Proteasome synthesis and assembly are required for survival during stationary phase. Free Radic Biol Med, 37: 859–868.PubMedCrossRefGoogle Scholar
  15. Chondrogianni, N. and Gonos, E.S. (2004) Proteasome inhibition induces a senescence-like phenotype in primary human fibroblasts cultures. Biogerontology, 5: 55–61.PubMedCrossRefGoogle Scholar
  16. Chondrogianni, N., Stratford, F.L., Trougakos, I.P., Friguet, B., Rivett, A.J. and Gonos, E.S. (2003) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem, 278: 28026–28037.PubMedCrossRefGoogle Scholar
  17. Conconi, M., Szweda, L.I., Levine, R.L., Stadtman, E.R. and Friguet, B. (1996) Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys, 331: 232–240.PubMedCrossRefGoogle Scholar
  18. Corcoran, L.J., Mitchison, T.J. and Liu, Q. (2004) A novel action of histone deactylase inhibitors in a protein aggresome disease model. Curr Biol, 14: 488–492.PubMedCrossRefGoogle Scholar
  19. Davies, K.J. (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie, 83: 301–310.PubMedCrossRefGoogle Scholar
  20. Deng, G.Y., Muir, A., Maclaren, N.K. and She, J.X. (1995) Association of LMP2 and LMP7 genes within the major histocompatibility complex with insulin-dependent diabetes mellitus: population and family studies. Am J Hum Genet, 56: 528–534.PubMedGoogle Scholar
  21. Dietrich, P., Rideout, H.J., Wang, Q. and Stefanis, L. (2003) Lack of p53 delays apoptosis, but increases ubiquitinated inclusions, in proteasomal inhibitor-treated cultured cortical neurons. Mol Cell Neurosci, 24: 430–441.PubMedCrossRefGoogle Scholar
  22. Ding, Q. and Keller, J.N. (2001) Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med, 31: 574–584.PubMedCrossRefGoogle Scholar
  23. Ding, Q. and Keller, J.N. (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem, 77: 1010–1017.PubMedCrossRefGoogle Scholar
  24. Ding, Q., Lewis, J.J., Strum, K.M., Dimayuga, E., Bruce-Keller, A.J., Dunn, J.C. and Keller, J.N. (2002) Polyglutamine expansion, protein aggregation, proteasome activity, and neural survival. J Biol Chem, 277: 13935–13942.PubMedCrossRefGoogle Scholar
  25. Ding, Q., Dimayuga, E., Martin, S., Bruce-Keller, A.J., Nukala, V., Cuervo, A.M. and Keller, J.N. (2003) Characterization of chronic low-level proteasome inhibition on neural homeostasis. J Neurochem, 86: 489–497.PubMedCrossRefGoogle Scholar
  26. Ding, Q., Bruce-Keller, A.J., Chen, Q. and Keller, J.N. (2004a) Analysis of gene expression in neural cells subject to chronic proteasome inhibition. Free Radic Biol Med, 36: 445–455.CrossRefGoogle Scholar
  27. Ding, Q., Dimayuga, E., Markesbery, W.R. and Keller, J.N. (2004b) Proteasome inhibition increases DNA and RNA oxidation in astrocyte and neuron cultures. J Neurochem, 91: 1211–1218.CrossRefGoogle Scholar
  28. Elsasser, S., Chandler-Militello, D., Muller, B., Hanna, J. and Finley, D. (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem, 279: 26817–26822.PubMedCrossRefGoogle Scholar
  29. Esterbauer, H., Schaur, R.J. and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 11: 81–128.PubMedCrossRefGoogle Scholar
  30. Ferrington, D.A. and Kapphahn, R.J. (2004) Catalytic site-specific inhibition of the 20S proteasome by 4-hydroxynonenal. FEBS Lett, 578: 217–223.PubMedCrossRefGoogle Scholar
  31. Forster, M.J., Sohal, B.H. and Sohal, R.S. (2000) Reversible effects of long-term caloric restriction on protein oxidative damage. J Gerontol A Biol Sci Med Sci, 55: B522–529.PubMedGoogle Scholar
  32. Fribley, A., Zeng, Q. and Wang, C.Y. (2004) Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol, 24: 9695–9704.PubMedCrossRefGoogle Scholar
  33. Friguet, B. and Szweda, L.I. (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett, 405: 21–25.PubMedCrossRefGoogle Scholar
  34. Friguet, B., Bulteau, A.L., Conconi, M. and Petropoulos, I. (2002) Redox control of 20S proteasome. Methods Enzymol, 353: 253–262.PubMedCrossRefGoogle Scholar
  35. Glockzin, S., von Knethen, A., Scheffner, M. and Brune, B. (1999) Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J Biol Chem, 274: 19581–19586.PubMedCrossRefGoogle Scholar
  36. Goto, S., Takahashi, R., Araki, S. and Nakamoto, H. (2002) Dietary restriction initiated in late adulthood can reverse age-related alterations of protein and protein metabolism. Ann N Y Acad Sci, 959: 50–56.PubMedCrossRefGoogle Scholar
  37. Gray, D.A., Tsirigotis, M. and Woulfe, J. (2003) Ubiquitin, proteasomes, and the aging brain. Sci Aging Knowledge Environ 2003, RE6.Google Scholar
  38. Griffin, T.A., Slack, J.P., McCluskey, T.S., Monaco, J.J. and Colbert, R.A. (2000) Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun, 3: 212–217.PubMedCrossRefGoogle Scholar
  39. Grimm, L.M. and Osborne, B.A. (1999) Apoptosis and the proteasome. Results Probl Cell Differ, 23: 209–228.PubMedGoogle Scholar
  40. Grune, T. and Davies, K.J. (1997) Breakdown of oxidized proteins as a part of secondary antioxidant defenses in mammalian cells. Biofactors, 6: 165–172.PubMedGoogle Scholar
  41. Grune, T., Reinheckel, T. and Davies, K.J. (1997) Degradation of oxidized proteins in mammalian cells. Faseb J, 11: 526–534.PubMedGoogle Scholar
  42. Grune, T., Blasig, I.E., Sitte, N., Roloff, B., Haseloff, R. and Davies, K.J. (1998) Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem, 273: 10857–10862.PubMedCrossRefGoogle Scholar
  43. Grune, T., Shringarpure, R., Sitte, N. and Davies, K. (2001) Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol A Biol Sci Med Sci, 56: B459–467.PubMedGoogle Scholar
  44. Harman, D. (2001) Aging: overview. Ann N Y Acad Sci, 928: 1–21.PubMedCrossRefGoogle Scholar
  45. Hensley, K. and Floyd, R.A. (2002) Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys, 397: 377–383.PubMedCrossRefGoogle Scholar
  46. Heward, J.M., Allahabadia, A., Sheppard, M.C., Barnett, A.H., Franklyn, J.A. and Gough, S.C. (1999) Association of the large multifunctional proteasome (LMP2) gene with Graves’ disease is a result of linkage disequilibrium with the HLA haplotype DRB1*0304-DQB1*02-DQA1*0501. Clin Endocrinol (Oxf), 51: 115–118.CrossRefGoogle Scholar
  47. Hyun, D.H., Lee, M.H., Halliwell, B. and Jenner, P. (2002) Proteasomal dysfunction induced by 4-hydroxy-2,3-trans-nonenal, an end-product of lipid peroxidation: a mechanism contributing to neurodegeneration? J Neurochem, 83: 360–370.PubMedCrossRefGoogle Scholar
  48. Jesenberger, V. and Jentsch, S. (2002) Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol, 3: 112–121.PubMedCrossRefGoogle Scholar
  49. Keller, J.N. and Markesbery, W.R. (2000) Proteasome inhibition results in increased poly-ADP-ribosylation: implications for neuron death. J Neurosci Res, 61: 436–442.PubMedCrossRefGoogle Scholar
  50. Keller, J.N., Hanni, K.B. and Markesbery, W.R. (2000a) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev, 113: 61–70.CrossRefGoogle Scholar
  51. Keller, J.N., Huang, F.F. and Markesbery, W.R. (2000b) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience, 98: 149–156.CrossRefGoogle Scholar
  52. Keller, J.N., Huang, F.F., Dimayuga, E.R. and Maragos, W.F. (2000c) Dopamine induces proteasome inhibition in neural PC12 cell line. Free Radic Biol Med, 29: 1037–1042.CrossRefGoogle Scholar
  53. Keller, J.N., Dimayuga, E., Chen, Q., Thorpe, J., Gee, J. and Ding, Q. (2004) Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol, 36: 2376–2391.PubMedCrossRefGoogle Scholar
  54. Kruger, E., Kloetzel, P.M. and Enenkel, C. (2001) 20S proteasome biogenesis. Biochimie, 83: 289–293.PubMedCrossRefGoogle Scholar
  55. Larsen, K.E. and Sulzer, D. (2002) Autophagy in neurons: a review. Histol Histopathol, 17: 897–908.PubMedGoogle Scholar
  56. Ling, Y.H., Liebes, L., Zou, Y. and Perez-Soler, R. (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem, 278: 33714–33723.PubMedCrossRefGoogle Scholar
  57. Lopes, U.G., Erhardt, P., Yao, R. and Cooper, G.M. (1997) p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem, 272: 12893–12896.PubMedCrossRefGoogle Scholar
  58. Louie, J.L., Kapphahn, R.J. and Ferrington, D.A. (2002) Proteasome function and protein oxidation in the aged retina. Exp Eye Res, 75: 271–284.PubMedGoogle Scholar
  59. Maksymowych, W.P., Tao, S., Vaile, J., Suarez-Almazor, M., Ramos-Remus, C. and Russell, A.S. (2000) LMP2 polymorphism is associated with extraspinal disease in HLA-B27 negative Caucasian and Mexican Mestizo patients with ankylosing spondylitis. J Rheumatol, 27: 183–189.PubMedGoogle Scholar
  60. Mangel, M. (2001) Complex adaptive systems, aging and longevity. J Theor Biol, 213: 559–571.PubMedCrossRefGoogle Scholar
  61. Merker, K., Stolzing, A. and Grune, T. (2001) Proteolysis, caloric restriction and aging. Mech Ageing Dev, 122: 595–615.PubMedCrossRefGoogle Scholar
  62. Mishto, M., Bonafe, M., Salvioli, S., Olivieri, F. and Franceschi, C. (2002) Age dependent impact of LMP polymorphisms on TNFalpha-induced apoptosis in human peripheral blood mononuclear cells. Exp Gerontol, 37: 301–308.PubMedCrossRefGoogle Scholar
  63. Mishto, M., Bellavista, E., Santoro, A., Stolzing, A., Ligorio, C., Nacmias, B., Spazzafumo, L., Chiappelli, M., Licastro, F., Sorbi, S., Pession, A., Ohm, T., Grune, T. and Franceschi, C. (2006) Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging, 27: 54–66.PubMedCrossRefGoogle Scholar
  64. Nakaso, K., Yoshimoto, Y., Yano, H., Takeshima, T. and Nakashima, K. (2004) p53-mediated mitochondrial dysfunction by proteasome inhibition in dopaminergic SH-SY5Y cells. Neurosci Lett, 354: 213–216.PubMedCrossRefGoogle Scholar
  65. Noda, C., Tanahashi, N., Shimbara, N., Hendil, K.B. and Tanaka, K. (2000) Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochem Biophys Res Commun, 277: 348–354.PubMedCrossRefGoogle Scholar
  66. Obin, M., Shang, F., Gong, X., Handelman, G., Blumberg, J. and Taylor, A. (1998) Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. Faseb J, 12: 561–569.PubMedGoogle Scholar
  67. Ogiso, Y., Tomida, A. and Tsuruo, T. (2002) Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase II-directed drugs. Cancer Res, 62: 5008–5012.PubMedGoogle Scholar
  68. Okada, K., Wangpoengtrakul, C., Osawa, T., Toyokuni, S., Tanaka, K. and Uchida, K. (1999) 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem, 274: 23787–23793.PubMedCrossRefGoogle Scholar
  69. Pacifici, R.E., Salo, D.C. and Davies, K.J. (1989) Macroxyproteinase (M.O.P.): a 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radic Biol Med, 7: 521–536.PubMedCrossRefGoogle Scholar
  70. Pacifici, R.E., Kono, Y. and Davies, K.J. (1993) Hydrophobicity as the signal for selective degradation of hydroxyl radical-modified hemoglobin by the multicatalytic proteinase complex, proteasome. J Biol Chem, 268: 15405–15411.PubMedGoogle Scholar
  71. Parsons, P.A. (2003) From the stress theory of aging to energetic and evolutionary expectations for longevity. Biogerontology, 4: 63–73.PubMedCrossRefGoogle Scholar
  72. Pasquini, L.A., Besio Moreno, M., Adamo, A.M., Pasquini, J.M. and Soto, E.F. (2000) Lactacystin, a specific inhibitor of the proteasome, induces apoptosis and activates caspase-3 in cultured cerebellar granule cells. J Neurosci Res, 59: 601–611.PubMedCrossRefGoogle Scholar
  73. Petropoulos, I., Conconi, M., Wang, X., Hoenel, B., Bregegere, F., Milner, Y. and Friguet, B. (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci, 55: B220–227.PubMedGoogle Scholar
  74. Piccinini, M., Mostert, M., Croce, S., Baldovino, S., Papotti, M. and Rinaudo, M.T. (2003) Interferon-gamma-inducible subunits are incorporated in human brain 20S proteasome. J Neuroimmunol, 135: 135–140.PubMedCrossRefGoogle Scholar
  75. Qiu, J.H., Asai, A., Chi, S., Saito, N., Hamada, H. and Kirino, T. (2000) Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurosci, 20: 259–265.PubMedGoogle Scholar
  76. Radak, Z., Takahashi, R., Kumiyama, A., Nakamoto, H., Ohno, H., Ookawara, T. and Goto, S. (2002) Effect of aging and late onset dietary restriction on antioxidant enzymes and proteasome activities, and protein carbonylation of rat skeletal muscle and tendon. Exp Gerontol, 37: 1423–1430.PubMedCrossRefGoogle Scholar
  77. Rattan, S.I. (2004) Hormetic mechanisms of anti-aging and rejuvenating effects of repeated mild heat stress on human fibroblasts in vitro. Rejuvenation Res, 7: 40–48.PubMedCrossRefGoogle Scholar
  78. Rivett, A.J. (1993) Proteasomes: multicatalytic proteinase complexes. Biochem J, 291 (Pt 1), 1–10.PubMedGoogle Scholar
  79. Ryu, H., Smith, K., Camelo, S.I., Carreras, I., Lee, J., Iglesias, A.H., Dandond, F., Cormier, K.A., Cudkowicz, M.F., Brown, R.H. and Ferrante, R.J. (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem, 93: 1087–1098.PubMedCrossRefGoogle Scholar
  80. Schmidt, M. and Kloetzel, P.M. (1997) Biogenesis of eukaryotic 20S proteasomes: the complex maturation pathway of a complex enzyme. Faseb J, 11: 1235–1243.PubMedGoogle Scholar
  81. Singh, S., Awasthi, N., Egwuagu, C.E. and Wagner, B.J. (2002) Immunoproteasome expression in a nonimmune tissue, the ocular lens. Arch Biochem Biophys, 405: 147–153.PubMedCrossRefGoogle Scholar
  82. Sitte, N., Merker, K., von Zglinicki, T. and Grune, T. (2000a) Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med, 28: 701–708.CrossRefGoogle Scholar
  83. Sitte, N., Huber, M., Grune, T., Ladhoff, A., Doecke, W.D., Von Zglinicki, T. and Davies, K.J. (2000b) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. Faseb J, 14: 1490–1498.CrossRefGoogle Scholar
  84. Sitte, N., Merker, K., Von Zglinicki, T., Davies, K.J. and Grune, T. (2000c) Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part II–aging of nondividing cells. Faseb J, 14: 2503–2510.CrossRefGoogle Scholar
  85. Sitte, N., Merker, K., Von Zglinicki, T., Grune, T. and Davies, K.J. (2000d) Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I–effects of proliferative senescence. Faseb J, 14: 2495–2502.CrossRefGoogle Scholar
  86. Sittler, A., Lurz, R., Lueder, G., Priller, J., Leharch, H., Hayer-Hartl, M.K., Hartl, F.U. and Wanker, E.E (2001) Geldamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet, 10: 1307–1315.PubMedCrossRefGoogle Scholar
  87. Sohal, R.S. and Weindruch, R. (1996) Oxidative stress, caloric restriction, and aging. Science, 273: 59–63.PubMedCrossRefGoogle Scholar
  88. Squier, T.C. (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol, 36: 1539–1550.PubMedCrossRefGoogle Scholar
  89. Sullivan, P.G., Dragicevic, N.B., Deng, J.H., Bai, Y., Dimayuga, E., Ding, Q., Chen, Q., Bruce-Keller, A.J. and Keller, J.N. (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem, 279: 20699–20707.PubMedCrossRefGoogle Scholar
  90. Uchida, K. (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res, 42: 318–343.PubMedCrossRefGoogle Scholar
  91. Ullrich, O. and Grune, T. (2001) Proteasomal degradation of oxidatively damaged endogenous histones in K562 human leukemic cells. Free Radic Biol Med, 31: 887–893.PubMedCrossRefGoogle Scholar
  92. Ullrich, O., Reinheckel, T., Sitte, N., Hass, R., Grune, T. and Davies, K.J. (1999) Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci USA, 96: 6223–6228.PubMedCrossRefGoogle Scholar
  93. Vinasco, J., Fraile, A., Nieto, A., Beraun, Y., Pareja, E., Mataran, L. and Martin, J. (1998) Analysis of LMP and TAP polymorphisms by polymerase chain reaction-restriction fragment length polymorphism in rheumatoid arthritis. Ann Rheum Dis, 57: 33–37.PubMedCrossRefGoogle Scholar
  94. Viteri, G., Carrard, G., Birlouez-Aragon, I., Silva, E. and Friguet, B. (2004) Age-dependent protein modifications and declining proteasome activity in the human lens. Arch Biochem Biophys, 427: 197–203.PubMedCrossRefGoogle Scholar
  95. Walters, K.J., Lech, P.J., Goh, A.M., Wang, Q. and Howley, P.M. (2003) DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc Natl Acad Sci USA, 100: 12694–12699.PubMedCrossRefGoogle Scholar
  96. Weindruch, R. (1996) The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol Pathol, 24: 742–745.PubMedGoogle Scholar
  97. Williams, S.A. and McConkey, D.J. (2003) The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res, 63: 7338–7344.PubMedGoogle Scholar
  98. Wojcik, C. (1999) Proteasomes in apoptosis: villains or guardians? Cell Mol Life Sci, 56: 908–917.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jeffrey N. Keller
    • 1
    • 2
  • Qunxing Ding
    • 1
  1. 1.Anatomy and Neurobiology Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  2. 2.Sanders-Brown Center on AgingUniversity of KentuckyLexington

Personalised recommendations