Skip to main content
  • 1041 Accesses

Abstract

Breast cancer is the most prevalent disease and cause of death among women in Northern Europe and the USA. The incidence rate is still increasing, and despite early diagnosis and improved treatment, the mortality is still high. Breast cancer is a very heterogeneous disease and less than 10% of the diagnosed cases are believed to be caused by an inherited factor. The information on tumor specific genomic alterations has dramatically increased during the past decade, and seen in relation to the effect on survival and treatment efficiency, these genomic changes may prove to act as prognostic and predictive factors. The introduction of methods to screen the entire genome for alterations has led to important knowledge of tumor biology, progression and targets of therapy. This chapter describes the different kinds of genomic alterations found in the tumor, the methods to assess them and examples of correlations between the changes and prognostic or predictive parameters

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd El-Rehim, D.M., et al. (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer, 116: 340–50.

    Article  PubMed  CAS  Google Scholar 

  • Akli, S. and Keyomarsi, K. (2004) Low-molecular-weight cyclin E: the missing link between biology and clinical outcome. Breast Cancer Res, 6: 188–91.

    Article  PubMed  CAS  Google Scholar 

  • Albertsen, H.M., et al. (1994) A physical map and candidate genes in the BRCA1 region on chromosome 17q12-21. Nat.Genet., 7: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Alsner, J., et al. (2000) Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients [In Process Citation]. Clin Cancer Res, 6: 3923–31.

    PubMed  CAS  Google Scholar 

  • Altshuler, D., et al. (2005) A haplotype map of the human genome. Nature, 437: 1299–320.

    Article  CAS  Google Scholar 

  • Ameyaw, M.M., et al. (2002) Ethnic variation in the HER-2 codon 655 genetic polymorphism previously associated with breast cancer. J Hum Genet, 47: 172–5.

    Article  PubMed  CAS  Google Scholar 

  • Arun, B. and Goss, P. (2004) The role of COX-2 inhibition in breast cancer treatment and prevention. Semin Oncol, 31: 22–9.

    Article  PubMed  CAS  Google Scholar 

  • Aubele, M., et al. (2002) Chromosomal imbalances are associated with metastasis-free survival in breast cancer patients. Anal Cell Pathol, 24: 77–87.

    PubMed  CAS  Google Scholar 

  • Bell, A.C., et al. (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science, 291: 447–50.

    Article  PubMed  CAS  Google Scholar 

  • Benusiglio, P.R., et al. (2005) Common ERBB2 polymorphisms and risk of breast cancer in a white British population: a case-control study. Breast Cancer Res, 7: R204–R209.

    Article  PubMed  CAS  Google Scholar 

  • Bergh, J., et al. (1995) Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particulary in relation to adjuvant systemic therapy and radiotherapy. Nature Medicine, 1: 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  • Blegen, H., et al. (2003) DNA amplifications and aneuploidy, high proliferative activity and impaired cell cycle control characterize breast carcinomas with poor prognosis. Anal Cell Pathol, 25: 103–14.

    PubMed  CAS  Google Scholar 

  • Borg, A., et al. (1992) Chromosome 1 alterations in breast cancer: allelic loss on 1p and 1q is related to lymphogenic metastases and poor prognosis. Genes Chromosomes Cancer, 5: 311–20.

    Article  PubMed  CAS  Google Scholar 

  • Borresen, A.L., et al. (1995) TP53 mutations and breast cancer prognosis: particularly poor survival rates for cases with mutations in the zinc-binding domains. Genes Chromosomes.Cancer, 14: 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Brenton, J.D., et al. (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol, 23: 7350–60.

    Article  PubMed  CAS  Google Scholar 

  • Buerger, H., et al. (1999) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol, 189: 521–6.

    Article  PubMed  CAS  Google Scholar 

  • Buerger, H., et al. (2001) Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J Pathol, 194: 165–70.

    Article  PubMed  CAS  Google Scholar 

  • Busmanis, I., et al. (1994) Analysis of cerbB2 expression using a panel of 6 commercially available antibodies. Pathology, 26: 261–7.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, R., et al. (1993) Genetic and molecular heterogeneity of breast cancer cells. Clin Chim Acta, 217: 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, E.E., et al. (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet, 21: 103–7.

    Article  PubMed  CAS  Google Scholar 

  • Cargill, M., et al. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet, 22: 231–8.

    Article  PubMed  CAS  Google Scholar 

  • Ching, T.T., et al. (2005) Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet, 37: 645–51.

    Article  PubMed  CAS  Google Scholar 

  • Cotton, R.G.H., et al. (1988) Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl. Acad. Sci. USA, 85: 4397–4401.

    Article  PubMed  CAS  Google Scholar 

  • Cross, S.H., et al. (1994) Purification of CpG islands using a methylated DNA binding column. Nat Genet, 6: 236–44.

    Article  PubMed  CAS  Google Scholar 

  • Dagan, E., et al. (2002) Androgen receptor CAG repeat length in Jewish Israeli women who are BRCA1/2 mutation carriers: association with breast/ovarian cancer phenotype. Eur J Hum Genet, 10: 724–8.

    Article  PubMed  CAS  Google Scholar 

  • Dandachi, N., et al. (2004) Evaluation of the clinical significance of HER2 amplification by chromogenic in situ hybridisation in patients with primary breast cancer. Anticancer Res, 24: 2401–6.

    PubMed  Google Scholar 

  • de Jong, M.M., et al. (2005) No increased susceptibility to breast cancer from combined CHEK2 1100delC genotype and the HLA class III region risk factors. Eur J Cancer, 41: 1819–23.

    Article  PubMed  CAS  Google Scholar 

  • De Placido, S., et al. (2003) Twenty-year results of the Naples GUN randomized trial: predictive factors of adjuvant tamoxifen efficacy in early breast cancer. Clin Cancer Res, 9: 1039–46.

    PubMed  Google Scholar 

  • Devilee, P. and Cornelisse, C.J. (1994) Somatic genetic changes in human breast cancer. Biochim.Biophys.Acta, 1198: 113–130.

    PubMed  Google Scholar 

  • Dobrovic, A. (2005) Methods for analysis of DNA methylation. In: Molecular Diagnostics: For the clinical Laboratorian, Sec ed. (Eds.: Coleman, W.B. and Tsongalis, G.J.) Pages 149–160, Humana Press Inc., Totowa, NJ.

    Google Scholar 

  • Dressler, L.G., et al. (2005) Comparison of HER2 status by fluorescence in situ hybridization and immunohistochemistry to predict benefit from dose escalation of adjuvant doxorubicin-based therapy in node-positive breast cancer patients. J Clin Oncol, 23: 4287–97.

    Article  PubMed  CAS  Google Scholar 

  • Dumitrescu, R.G. and Cotarla, I. (2005) Understanding breast cancer risk – where do we stand in 2005? J Cell Mol Med, 9: 208–21.

    Article  PubMed  CAS  Google Scholar 

  • Durbecq, V., et al. (2004) Topoisomerase-II alpha expression as a predictive marker in a population of advanced breast cancer patients randomly treated either with single-agent doxorubicin or single-agent docetaxel. Mol Cancer Ther, 3: 1207–14.

    PubMed  CAS  Google Scholar 

  • Eifel, P., et al. (2001) National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst, 93: 979–89.

    Article  PubMed  CAS  Google Scholar 

  • Eiriksdottir, G., et al. (1998) Mapping loss of heterozygosity at chromosome 13q: loss at 13q12-q13 is associated with breast tumour progression and poor prognosis. Eur J Cancer, 34: 2076–81.

    Article  PubMed  CAS  Google Scholar 

  • Emens, L.A. (2005) Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am J Ther, 12: 243–53.

    PubMed  Google Scholar 

  • Esteller, M. (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 21: 5427–40.

    Article  PubMed  CAS  Google Scholar 

  • Fearon, E.R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell, 61: 759–67.

    Article  PubMed  CAS  Google Scholar 

  • Fodde, R. and Smits, R. (2001) Disease model: familial adenomatous polyposis. Trends Mol Med, 7: 369–73.

    Article  PubMed  CAS  Google Scholar 

  • Forozan, F., et al. (2000) Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res, 60: 4519–25.

    PubMed  CAS  Google Scholar 

  • Fusun, T., et al. (2005) Association of HER-2/neu overexpression with the number of involved axillary lymph nodes in hormone receptor positive breast cancer patients. Exp Oncol, 27: 145–9.

    PubMed  CAS  Google Scholar 

  • Gaki, V., et al. (2000) Allelic loss in chromosomal region 1q21-23 in breast cancer is associated with peritumoral angiolymphatic invasion and extensive intraductal component. Eur J Surg Oncol, 26: 455–60.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, J.M., et al. (1999) Allelic loss of the PTEN region (10q23) in breast carcinomas of poor pathophenotype. Breast Cancer Res Treat, 57: 237–43.

    Article  PubMed  CAS  Google Scholar 

  • Gasparini, G., et al. (2005) Therapy of breast cancer with molecular targeting agents. Ann Oncol, 16 Suppl 4: iv28–iv36.

    Google Scholar 

  • Gentile, M., et al. (1999) Frequent allelic losses at 11q24.1-q25 in young women with breast cancer: association with poor survival. Br J Cancer, 80: 843–9.

    Article  PubMed  CAS  Google Scholar 

  • Gitan, R.S., et al. (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res, 12: 158–64.

    Article  PubMed  CAS  Google Scholar 

  • Goldhirsch, A., et al. (2003) Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol, 21: 3357–65.

    Article  PubMed  Google Scholar 

  • Gong, Y., et al. (2005) Comparison of HER-2 status determined by fluorescence in situ hybridization in primary and metastatic breast carcinoma. Cancer, 103: 1763–9.

    Article  PubMed  CAS  Google Scholar 

  • Haga, S., et al. (2001) Association of allelic losses at 3p25.1, 13q12, or 17p13.3 with poor prognosis in breast cancers with lymph node metastasis. Jpn J Cancer Res, 92: 1199–206.

    PubMed  CAS  Google Scholar 

  • Han, W., et al. (2005) A haplotype analysis of HER-2 gene polymorphisms: association with breast cancer risk, HER-2 protein expression in the tumor, and disease recurrence in Korea. Clin Cancer Res, 11: 4775–8.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, L.L., et al. (1996) Sensitive and fast mutation detection by solid-phase chemical cleavage. Human Mutation, 7: 256–263.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, L.L., et al. (1998) Allelic loss of 16q23.2-24.2 is an independent marker of good prognosis in primary breast cancer. Cancer Res, 58: 2166–9.

    PubMed  CAS  Google Scholar 

  • Hansen, L.L. and Justesen, J. (2003) Loss of heterozygosity, a multiplex PCR method to define narrow deleted chropmosomal regions of a tumor genome. In: PCR Primer. A laboratory manual. (Eds.: Dieffenbach, C.W. and Dveksler, G.S.) Pages 223–236, Cold Spring Harbor Laboratory Press, New York, USA.

    Google Scholar 

  • Harbeck, N., et al. (2004) Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer. Clin Breast Cancer, 5: 348–52.

    PubMed  CAS  Google Scholar 

  • Heikkinen, K., et al. (2005) Mutation analysis of the ATR gene in breast and ovarian cancer families. Breast Cancer Res, 7: R495–R501.

    Article  PubMed  CAS  Google Scholar 

  • Hermsen, M.A., et al. (1998) Genetic analysis of 53 lymph node-negative breast carcinomas by CGH and relation to clinical, pathological, morphometric, and DNA cytometric prognostic factors. J Pathol, 186: 356–62.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, D.G. and Tubbs, R.R. (2005) Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol, 36: 250–61.

    Article  PubMed  CAS  Google Scholar 

  • Hoque, M.O., et al. (2004) Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res, 64: 5511–7.

    Article  PubMed  CAS  Google Scholar 

  • Hoyal, C.R., et al. (2005) Genetic polymorphisms in DPF3 associated with risk of breast cancer and lymph node metastases. J Carcinog, 4: 13.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, W.C., et al. (2004) Estrogen receptor-alpha polymorphism in a Taiwanese clinical breast cancer population: a case-control study. Breast Cancer Res, 6: R180–6.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T.H., et al. (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet, 8: 459–70.

    Article  PubMed  CAS  Google Scholar 

  • Huiping, C., et al. (1998) High frequency of LOH at chromosome 18q in human breast cancer: association with high S-phase fraction and low progesterone receptor content. Anticancer-Res, 18: 1031–6 issn: 0250-7005.

    PubMed  CAS  Google Scholar 

  • Hunt, K.K. and Keyomarsi, K. (2005) Cyclin E as a prognostic and predictive marker in breast cancer. Semin Cancer Biol, 15: 319–26.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, E., et al. (2002) Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res, 62: 6240–5.

    PubMed  CAS  Google Scholar 

  • Ichikawa, D., et al. (2004) Detection of aberrant methylation as a tumor marker in serum of patients with gastric cancer. Anticancer Res, 24: 2477–81.

    PubMed  CAS  Google Scholar 

  • Ishkanian, A.S., et al. (2004) A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet, 36: 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Jatoi, I. and Miller, A.B. (2003) Why is breast-cancer mortality declining? Lancet Oncol, 4: 251–254.

    Article  PubMed  Google Scholar 

  • Janssen, E.A., et al. (2003) In lymph node-negative invasive breast carcinomas, specific chromosomal aberrations are strongly associated with high mitotic activity and predict outcome more accurately than grade, tumour diameter, and oestrogen receptor. J Pathol, 201: 555–61.

    Article  PubMed  CAS  Google Scholar 

  • Judson, R. and Stephens, J.C. (2001) Notes from the SNP vs. haplotype front. Pharmacogenomics, 2: 7–10.

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi, A., et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258: 818–21.

    Article  PubMed  CAS  Google Scholar 

  • Kammerer, S., et al. (2004) Large-scale association study identifies ICAM gene region as breast and prostate cancer susceptibility locus. Cancer Res, 64: 8906–10.

    Article  PubMed  CAS  Google Scholar 

  • Keyomarsi, K., et al. (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med, 347: 1566–75.

    Article  PubMed  CAS  Google Scholar 

  • Kinzler, K.W. and Vogelstein, B. (1996) Life (and death) in a malignant tumour. Nature, 379: 19–20.

    Article  PubMed  CAS  Google Scholar 

  • Knudson, A. (2001) Alfred Knudson and his two-hit hypothesis. (Interview by Ezzie Hutchinson). Lancet Oncol, 2: 642–5.

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak, L. and Nickerson, D.A. (2001) Variation is the spice of life. Nat Genet, 27: 234–6.

    Article  PubMed  CAS  Google Scholar 

  • Leitzel, K., et al. (1995) Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol, 13: 1129–35.

    PubMed  CAS  Google Scholar 

  • Lo, Y.L., et al. (2005) Breast cancer risk associated with genotypic polymorphism of the mitosis-regulating gene Aurora-A/STK15/BTAK. Int J Cancer, 115: 276–83.

    Article  PubMed  CAS  Google Scholar 

  • Manders, P., et al. (2004) Complex of urokinase-type plasminogen activator with its type 1 inhibitor predicts poor outcome in 576 patients with lymph node-negative breast carcinoma. Cancer, 101: 486–94.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, K.L., et al. (2005) Physical activity in different periods of life and the risk of breast cancer: the Norwegian-Swedish Women’s Lifestyle and Health cohort study. Cancer Epidemiol Biomarkers Prev, 14: 27–32.

    PubMed  Google Scholar 

  • Matsumoto, S., et al. (2000) Loss of heterozygosity at 3p24-p25 as a prognostic factor in breast cancer. Cancer Lett, 152: 63–9.

    Article  PubMed  CAS  Google Scholar 

  • Miller, B.J., et al. (2003) Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am J Hum Genet, 73: 748–67.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, K., et al. (2005) Identification of 20 genes aberrantly methylated in human breast cancers. Int J Cancer, 116: 407–14.

    Article  PubMed  CAS  Google Scholar 

  • Nagahata, T., et al. (2002) Correlation of allelic losses and clinicopathological factors in 504 primary breast cancers. Breast Cancer, 9: 208–15.

    Article  PubMed  Google Scholar 

  • Nagai, M.A., et al. (1994) Allelic loss on distal chromosome 17p is associated with poor prognosis in a group of Brazilian breast cancer patients. Br J Cancer, 69: 754–8.

    PubMed  CAS  Google Scholar 

  • Nelson, M.R., et al. (2004) Large-scale validation of single nucleotide polymorphisms in gene regions. Genome Res, 14: 1664–8.

    Article  PubMed  CAS  Google Scholar 

  • Nexo, B.A., et al. (2003) A specific haplotype of single nucleotide polymorphisms on chromosome 19q13.2-3 encompassing the gene RAI is indicative of post-menopausal breast cancer before age 55. Carcinogenesis, 24: 899–904.

    Article  PubMed  CAS  Google Scholar 

  • Palmisano, W.A., et al. (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res, 60: 5954–8.

    PubMed  CAS  Google Scholar 

  • Parkin, D.M., et al. (1999) Global cancer statistics. CA Cancer J Clin, 49: 33–64, 1.

    PubMed  CAS  Google Scholar 

  • Pegram, M.D., et al. (1997) The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene, 15: 537–47.

    Article  PubMed  CAS  Google Scholar 

  • Pharoah, P.D., et al. (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet, 31: 33–6.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, A.E., et al. (2005) Correlations of cell cycle regulators (p53, p21, pRb and mdm2) and c-erbB-2 with biological markers of proliferation and overall survival in breast cancer. Pathology, 37: 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Press, M.F., et al. (1993) Her-2/neu expression in node-negative breast cancer: Direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. Cancer Res., 53: 4960–4970.

    PubMed  CAS  Google Scholar 

  • Press, M.F., et al. (1994) Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res, 54: 2771–7.

    PubMed  CAS  Google Scholar 

  • Press, M.F., et al. (2002) Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol, 20: 3095–105.

    PubMed  CAS  Google Scholar 

  • Quon, K.C. and Berns, A. (2001) Haplo-insufficiency? Let me count the ways. Genes Dev, 15: 2917–21.

    Article  PubMed  CAS  Google Scholar 

  • Ragnarsson, G., et al. (1999) Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival. Br J Cancer, 79: 1468–74.

    Article  PubMed  CAS  Google Scholar 

  • Rebbeck, T.R., et al. (1999) Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am J Hum Genet, 64: 1371–7.

    Article  PubMed  CAS  Google Scholar 

  • Regitnig, P., et al. (2002) Microsatellite analysis of breast carcinoma and corresponding local recurrences. J Pathol, 198: 190–7.

    Article  PubMed  CAS  Google Scholar 

  • Reich, D.E., et al. (2003) Quality and completeness of SNP databases. Nat Genet, 33: 457–8.

    Article  PubMed  CAS  Google Scholar 

  • Richard, F., et al. (2000) Patterns of chromosomal imbalances in invasive breast cancer. Int J Cancer, 89: 305–10.

    Article  PubMed  CAS  Google Scholar 

  • Ross, J.S. and Fletcher, J.A. (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells, 16: 413–28.

    Article  PubMed  CAS  Google Scholar 

  • Ross, J.S., et al. (2004) Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics, 3: 379–98.

    Article  PubMed  CAS  Google Scholar 

  • Rueckert, S., et al. (2005) A monoclonal antibody as an effective therapeutic agent in breast cancer: trastuzumab. Expert Opin Biol Ther, 5: 853–66.

    Article  PubMed  CAS  Google Scholar 

  • Seitz, S., et al. (1997) Deletion mapping and linkage analysis provide strong indication for the involvement of the human chromosome region 8p12-p22 in breast carcinogenesis. Br J Cancer, 76: 983–91.

    PubMed  CAS  Google Scholar 

  • Shi, H., et al. (2003) Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem, 88: 138–43.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H., et al. (2003) Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res, 63: 2164–71.

    PubMed  CAS  Google Scholar 

  • Skotheim, R.I., et al. (2001) Evaluation of loss of heterozygosity/allelic imbalance scoring in tumor DNA. Cancer Genet Cytogenet, 127: 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.L. and Seo, Y.R. (2000) Sensitivity of cyclin E-overexpressing cells to cisplatin/taxol combinations. Anticancer Res, 20: 2537–9.

    PubMed  CAS  Google Scholar 

  • Smylie, K.J., et al. (2004) Analysis of sequence variations in several human genes using phosphoramidite bond DNA fragmentation and chip-based MALDI-TOF. Genome Res, 14: 134–41.

    Article  PubMed  CAS  Google Scholar 

  • Sorlie, T., et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 98: 10869–74.

    Article  PubMed  CAS  Google Scholar 

  • Sorlie, T., et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A, 100: 8418–23.

    Article  PubMed  CAS  Google Scholar 

  • Suter, N.M., et al. (2003) Androgen receptor (CAG)n and (GGC)n polymorphisms and breast cancer risk in a population-based case-control study of young women. Cancer Epidemiol Biomarkers Prev, 12: 127–35.

    PubMed  CAS  Google Scholar 

  • Tomlinson, I.P., et al. (2002) Loss of heterozygosity analysis: practically and conceptually flawed? Genes Chromosomes Cancer, 34: 349–53.

    Article  PubMed  Google Scholar 

  • Topaloglu, O., et al. (2004) Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin Cancer Res, 10: 2284–8.

    Article  PubMed  CAS  Google Scholar 

  • Tower, G.B., et al. (2003) The 2G single nucleotide polymorphism (SNP) in the MMP-1 promoter contributes to high levels of MMP-1 transcription in MCF-7/ADR breast cancer cells. Breast Cancer Res Treat, 82: 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Tsumagari, K., et al. (2005) Postoperative prognosis of node-negative breast cancers predicted by gene-expression profiling on a cDNA microarray of 25,344 genes. Breast Cancer, 12: 166–77.

    Article  PubMed  Google Scholar 

  • Tsuneizumi, M., et al. (2002) Association of allelic loss at 8p22 with poor prognosis among breast cancer cases treated with high-dose adjuvant chemotherapy. Cancer Lett, 180: 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Utada, Y., et al. (2000) Allelic loss at the 8p22 region as a prognostic factor in large and estrogen receptor negative breast carcinomas. Cancer, 88: 1410–6.

    Article  PubMed  CAS  Google Scholar 

  • van’t Veer, L.J., et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415: 530–6.

    Article  Google Scholar 

  • van de Vijver, M.J., et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med, 347: 1999–2009.

    Article  PubMed  Google Scholar 

  • Waard, F.D. and Thijssen, J.H. (2005) Hormonal aspects in the causation of human breast cancer: Epidemiological hypotheses reviewed, with special reference to nutritional status and first pregnancy. J Steroid Biochem Mol Biol,

    Google Scholar 

  • Wang, Y., et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365: 671–9.

    PubMed  CAS  Google Scholar 

  • Weber, B.L. and Nathanson, K.L. (2000) Low penetrance genes associated with increased risk for breast cancer. Eur J Cancer, 36: 1193–9.

    Article  PubMed  CAS  Google Scholar 

  • Winqvist, R., et al. (1995) Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastasis. Cancer Res, 55: 2660–4.

    PubMed  CAS  Google Scholar 

  • Worm, J., et al. (2001) In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem, 47: 1183–9.

    PubMed  CAS  Google Scholar 

  • Yan, P.S., et al. (2002) Applications of CpG island microarrays for high-throughput analysis of DNA methylation. J Nutr, 132: 2430S–2434S.

    PubMed  CAS  Google Scholar 

  • Yu, H., et al. (2000) Shorter CAG repeat length in the androgen receptor gene is associated with more aggressive forms of breast cancer. Breast Cancer Res Treat, 59: 153–61.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., et al. (2004) An evolutionary perspective on single-nucleotide polymorphism screening in molecular cancer epidemiology. Cancer Res, 64: 2251–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hansen, L.L. (2006). Molecular Diagnosis of Breast Cancer. In: Rattan, S.I., Kassem, M. (eds) Prevention and Treatment of Age-related Diseases. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5058-5_12

Download citation

Publish with us

Policies and ethics