Advertisement

Biological causes of aging and age-related diseases

  • Suresh I.S. Rattan
Chapter

Abstract

Aging is a progressive accumulation of molecular damage in nucleic acids, proteins and lipids. The inefficiency and failure of maintenance, repair and turnover pathways is the main cause of age-related accumulation of damage, which is also the basis of all age-related diseases. Research in molecular gerontology is aimed at understanding the genetic and epigenetic regulation of molecular mechanisms at the levels of transcription, post-transcriptional processing, post-translational modifications, and interactions among various gene products. Concurrently, several approaches are being tried and tested to modulate aging. The ultimate aim of such studies is to improve the quality of human life in old age and prolong the health-span. Various gerontomodulatory approaches include gene therapy, hormonal supplementation, nutritional modulation and intervention by free radical scavengers and other molecules. A recent approach is that of applying hormesis in aging research and therapy, which is based on the principle of stimulation of maintenance and repair pathways by repeated exposure to mild stress. A combination of molecular, physiological and psychological modulatory approaches can be effective to prevent and/or treat various age-related diseases

Keywords

lifespan survival longevity stress hormesis homeostasis homeodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altomare, K., Greco, V., Bellizzi, D., Berardelli, M., et al. (2003) The allele (A)-110 in the promoter region of the HSP70-1gene is unfavourable to longevity in women. Biogerontology, 4: 215–220.PubMedCrossRefGoogle Scholar
  2. Anson, R.M., Guo, Z., de Cabo, R., Lyun, T., et al. (2003) Intermittent fasting dissociates beneficial effects of dietaryrestriction on glucose metabolism and neuronal resistance toinjury from calorie restriction. Proc Natl. Acad. Sci. USA, 100: 6216–6220.PubMedCrossRefGoogle Scholar
  3. Arking, D.E., Krebsova, A., Macek Sr., M., Macek, J., M., et al. (2002) Association of human aging with a functional variant of klotho. Proc. Natl. Acad. Sci. USA, 99: 856–861.PubMedCrossRefGoogle Scholar
  4. Atzmon, G., Rincon, M., Rabizadeh, P. and Barzilai, N. (2005) Biological evidence for inheritance of exceptional longevity. Mech. Age. Dev., 126: 341–345.CrossRefGoogle Scholar
  5. Barciszewski, J., Rattan, S.I.S., Siboska, G. and Clark, B.F.C. (1999) Kinetin – 45 years on. Plant Sci., 148: 37–45.CrossRefGoogle Scholar
  6. Bessenyei, B., Marka, M., Urban, L., Zeher, M., et al. (2004) Single nucleotide polymorphisms: aging and diseases. Biogerontology, 5: 291–300.PubMedCrossRefGoogle Scholar
  7. Bierhaus, A., Wolf, J., Andrassy, M., Rohleder, N., et al. (2003) A mechanism converting psychosocial stress into mononuclear cellactivation. Proc. Natl. Acad. Sci. USA, 100: 1920–1925.PubMedCrossRefGoogle Scholar
  8. Boia, L. (2004) Forever Young: A Cultural History of Longevity. London: Reaktion Books Ltd.Google Scholar
  9. Calabrese, E.J. and Baldwin, L.A. (2000) Tales of two similar hypotheses: the rise and fall of chemical and radiation hormesis. Hum. Exp. Toxicol., 19: 85–97.PubMedCrossRefGoogle Scholar
  10. Carnes, B.A., Olshansky, S.J. and Grahn, D. (2003) Biological evidence for limits to the duration of life. Biogerontology, 4: 31–45.PubMedCrossRefGoogle Scholar
  11. De Haan, G., Gelman, R., Watson, A., Yunis, E., et al. (1998) Aputative gene causes variability in lifespan among gentoypically identiacal mice. Nat. Genet., 19: 114–116.PubMedCrossRefGoogle Scholar
  12. Demetrius, L. (2004) Calorie restricition, metabolic rate andentropy. J. Gerontol. Biol. Sci., 59A: 902–915.Google Scholar
  13. De Nicolas, A.T. (1998) The biocultural paradigm: the neural connection between science and mysticism. Exp. Gerontol., 33: 169–182.PubMedCrossRefGoogle Scholar
  14. Dunsmore, K.E., Chen, P.G. and Wong, H.R. (2001) Curcumin, amedicinal herbal compound capable of inducing heat shock response. Crit. Care Med., 29: 2199–2204.PubMedCrossRefGoogle Scholar
  15. Ferrari, C.K.B. (2004) Functional foods, herbs and neutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology, 5: 275–289.PubMedCrossRefGoogle Scholar
  16. Finch, C.E. and Tanzi, R.E. (1997) Genetics of aging. Science, 278: 407–411.PubMedCrossRefGoogle Scholar
  17. Franceschi, C., Valensin, S., Bonafé, M., Paolisso, G., et al. (2000) The network and the remodeling theories of aging: historical background and new perspectives. Exp. Gerontol., 35: 879–896.PubMedCrossRefGoogle Scholar
  18. Franceschi, C., Olivieri, F., Marchegiani, F., Cardelli, M., et al. (2005) Genes involved in immune response/inflammation, IGF/insulin pathway and response to oxidative stress play a majorrole in the genetics of human longevity: the lesson of centenarians. Mech. Age. Dev., 126: 351–361.CrossRefGoogle Scholar
  19. Gavrilov, L.A. and Gavrilova, N.S. (2001) The reliability theory of aging and longevity. J. Theor. Biol., 213: 527–545.PubMedCrossRefGoogle Scholar
  20. Gelman, R., Watson, A., Bronson, R. and Yunis, E. (1988) Murine chromosomal regions correlated with longevity. Genetics, 118: 693–704.PubMedGoogle Scholar
  21. Gudmundsson, H., Gudbjartsson, D.F., Kong, A.N.T., Gudbjartsson, H., et al. (2000) Inheritance of human longevity in Iceland. Eur.J. Hum. Genet., 8: 743–749.PubMedCrossRefGoogle Scholar
  22. Harley, C.B., Vaziri, H., Counter, C.M. and Allsopp, R.C. (1992) The telomere hypothesis of cellular aging. Exp. Gerontol., 27: 375–382.PubMedCrossRefGoogle Scholar
  23. Harman, D. (1994) Free-radical theory of aging. Increasing thefunctional lifespan. Annal. N.Y. Acad. Sci., 717: 1–15.CrossRefGoogle Scholar
  24. Hercus, M.J., Loeschcke, V. and Rattan, S.I.S. (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology, 4: 149–156.PubMedCrossRefGoogle Scholar
  25. Herskind, A.M.M., M., Holm, N.V., Sørensen, T.I.A., Harvald, B., et al. (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum. Genet., 97: 319–323.PubMedGoogle Scholar
  26. Holliday, R. (1995) Understanding Ageing. Cambridge: Cambridge University Press. 207.Google Scholar
  27. Holliday, R. (1996) The current status of the protein errortheory of aging. Exp. Gerontol., 31: 449–452.PubMedCrossRefGoogle Scholar
  28. Holliday, R. (2000) Ageing research in the next century. Biogerontology, 1: 97–101.PubMedCrossRefGoogle Scholar
  29. Holmes-Davis, R., Payne, S.R. and Comai, L. (2001) The effects ofkinetin and hydroxyurea on the expression of the endogeneous and transgenic Heat Shock Cognate 80 (HSC80). Plant Cell rep., 20: 744–748.CrossRefGoogle Scholar
  30. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425: 191–196.PubMedCrossRefGoogle Scholar
  31. Hsiao, G., Shen, M.Y., Lin, K.H., Chou, C.Y., et al. (2003) Inhibitory activity of kinetin on free radical formation ofactivated platelets in vitro and on thrombus formation in vivo. Eur. J. Pharmacol., 465: 281–287.PubMedCrossRefGoogle Scholar
  32. Jazwinski, S.M. (1999) Longevity, genes, and aging: a view provided by a genetic model system. Exp. Gerontol., 34: 1–6.PubMedCrossRefGoogle Scholar
  33. Johnson, T.E., Cypser, J., de Castro, E., de Castro, S., et al. (2000) Gerontogenes mediate health and longevity in nematodes through increasing resistance to environmental toxins andstressors. Exp. Gerontol., 35: 687–694.PubMedCrossRefGoogle Scholar
  34. Johnson, T.E. (2002) A personal retrospective on the genetics of aging. Biogerontology, 3: 7–12.PubMedCrossRefGoogle Scholar
  35. Kanungo, M.S. (1994) Genes and Aging. Cambridge: Cambridge University Press. 325.Google Scholar
  36. Kapahi, P., Boulton, M.E. and Kirkwood, T.B.L. (1999) Positive correlation between mammalian life span and cellular resistanceto stress. Free Radic. Biol. Med., 26: 495–500.PubMedCrossRefGoogle Scholar
  37. Kirkwood, T.B.L. and Austad, S.N. (2000) Why do we age? Nature, 408: 233–238.PubMedCrossRefGoogle Scholar
  38. Korpelainen, H. (2000) Variation in the heritability and evolvability of human lifespan. Naturwissenchaften, 87: 566–568.CrossRefGoogle Scholar
  39. Kowald, A. and Kirkwood, T.B.L. (1996) A network theory of ageing: the interactions of defective mitochondria, aberrantproteins, free radicals and scavengers in the ageing process. Mutat. Res., 316: 209–236.PubMedGoogle Scholar
  40. Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., et al. (1997) Mutation of the mouse klotho gene leads to asyndrome resembling ageing. Nature, 390: 45–51.PubMedCrossRefGoogle Scholar
  41. Kyriazis, M. (2003) Practical applications of chaos theory to the modulation of human ageing: nature prefers chaos to regularity. Biogerontology, 4: 75–90.PubMedCrossRefGoogle Scholar
  42. Lakowski, B. and Hekimi, S. (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science, 272: 1010–1013.PubMedCrossRefGoogle Scholar
  43. Lamming, D.W., Wood, J.G. and Sinclair, D.A. (2004) Small molecules that regulate lifespan: evidence for xenohormesis. Mol. Microbiol., 53: 1003–1009.PubMedCrossRefGoogle Scholar
  44. Lane, M.A., Ingram, D.K. and Roth, G.S. (2002) The serious searchfor an anti-aging pill. Sci. Amer., 287: 24–29.Google Scholar
  45. Larsen, P.L. (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 90: 8905–8909.PubMedCrossRefGoogle Scholar
  46. Le Bourg, E. (2005) Antioxidants and aging in human beings., In: Rattan, S.I.S., Editor. Aging Interventions and Therapies., inpress. World Scientific Publishers.: Singapore.Google Scholar
  47. Lithgow, G.J., White, T.M., Melov, S. and Johnson, T.E. (1995) Thermotolerance and extended life-span conferred by single-genemutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA, 92: 7540–7544.PubMedCrossRefGoogle Scholar
  48. Luckinbill, L.S. and Foley, P. (2000) Experimental and empirical approaches in the study of aging. Biogerontology, 1: 3–13.PubMedCrossRefGoogle Scholar
  49. Martin, G.M. (1997) The Werner mutation: does it lead to a “public” or “private” mechanism of aging? Mol. Med., 3: 356–358.PubMedGoogle Scholar
  50. Martin, G.M. and Oshima, J. (2000) Lessons from progeroidsyndromes. Nature, 408: 263–266.PubMedCrossRefGoogle Scholar
  51. Masoro, E.J. (1998) Hormesis and the antiaging action of dietary restriction. Exp. Gerontol., 33: 61–66.PubMedCrossRefGoogle Scholar
  52. Masoro, E.J. (2000) Caloric restriction and aging: an update. Exp. Gerontol., 35: 299–305.PubMedCrossRefGoogle Scholar
  53. Masoro, E.J. and Austad, S.N. (1996) The evolution of the antiaging action of dietary restriction: a hypothesis. J.Gerontol. Biol. Sci., 51A: B387–B391.Google Scholar
  54. McArdle, A., Vasilaki, A. and Jackson, M. (2002) Exercise and skeletal muscle ageing: cellular and molecular mechanisms. Ageing Res. Rev., 1: 79–93.PubMedCrossRefGoogle Scholar
  55. Miller, R.A., Chrisp, C., Jackson, A.U. and Burke, D. (1998) Marker loci associated with life span in genetically heterogeneous mice. J. Gerontol. Med. Sci., 53A: M257–M263.Google Scholar
  56. Minois, N. (2000) Longevity and aging: beneficial effects of exposure to mild stress. Biogerontology, 1: 15–29.PubMedCrossRefGoogle Scholar
  57. Morley, A.A. (1995) The somatic mutation theory of ageing. Mutat. Res., 338: 19–23.PubMedGoogle Scholar
  58. Olovnikov, A.M. (1996) Telomeres, telomerases, and aging: origin of the theory. Exp. Gerontol., 31: 443–448.PubMedCrossRefGoogle Scholar
  59. Olsen, A., Siboska, G.E., Clark, B.F.C. and Rattan, S.I.S. (1999) N6-furfuryladenine, kinetin, protects against Fentonreaction-mediated oxidative damage to DNA. Biochem. Biophys. Res.Commun., 265: 499–502.PubMedCrossRefGoogle Scholar
  60. Olshansky, S.J., Hayflick, L. and Carnes, B.A. (2002) No truth tothe fountain of youth. Sci. Amer., 286: 92–95.PubMedCrossRefGoogle Scholar
  61. Olshansky, S.J., Hayflick, L. and Carnes, B.A. (2002) Position statement on human aging. J. Gerontol. Biol. Sci., 57A: B292–B297.Google Scholar
  62. Orr, W.C. and Sohal, R.S. (1994) Extension of life-span by over expression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 263: 1128–1130.PubMedCrossRefGoogle Scholar
  63. Parsons, P.A. (2000) Hormesis: an adaptive expectation with emphasis on ionizing radiation. J. Appl. Toxicol., 20: 103–112.PubMedCrossRefGoogle Scholar
  64. Pollycove, M. and Feinendegen, L.E. (2001) Biologic responses tolow doses of ionizing radiation: detriment versus hormesis. Part2. Dose responses of organisms. J. Nucl. Med., 42: 26N–37N.PubMedGoogle Scholar
  65. Puca, A.A., Daly, M.J., Brewster, S.J., Matsie, T.C., et al. (2001) A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc. Natl. Acad.Sci. USA, 98: 10505–10508.PubMedCrossRefGoogle Scholar
  66. Raji, N.S., Surekha, A. and Subba Rao, K. (1998) Improved DNA-repair parameters in PHA-stimulated peripheral blood lymphocytes of human subjects with low body mass index. Mech.Ageing Dev., 104: 133–148.PubMedCrossRefGoogle Scholar
  67. Rattan, S.I.S., Eskildsen-Helmond, Y.E.G. and Beedholm, R. (2003) Molecular mechanisms of anti-aging hormetic effects of mild heatstress on human cells. Nonlinear. Biol. Toxicol. Med., 2: 105–116.Google Scholar
  68. Rattan, S.I.S. (2004) Aging intervention, prevention, and therapy through hormesis. J. Gerontol. Biol. Sci., 59A: 705–709.Google Scholar
  69. Rattan, S.I.S., Gonzales-Dosal, R., Nielsen, E.R., Kraft, D.C., et al. (2004) Slowing down aging from within: mechanistic aspectsof anti-aging hormetic effects of mild heat stress on humancells. Acta Biochimica Polonica, 51: 481–492.PubMedGoogle Scholar
  70. Rattan, S.I.S. series editor; Biology of Aging and its Modulation. 5-volume series. Kluwer Academic Publishers: Dordrecht.Google Scholar
  71. Rattan, S.I.S. (1989) DNA damage and repair during cellularaging. Int. Rev. Cytol., 116: 47–88.PubMedCrossRefGoogle Scholar
  72. Rattan, S.I.S. (1995) Ageing – a biological perspective. Molec. Aspects Med., 16: 439–508.CrossRefGoogle Scholar
  73. Rattan, S.I.S. (1995) Gerontogenes: real or virtual? FASEB J., 9: 284–286.PubMedGoogle Scholar
  74. Rattan, S.I.S. (1998) The nature of gerontogenes and vitagenes. Antiaging effects of repeated heat shock on human fibroblasts. Annal. NY Acad. Sci., 854: 54–60.CrossRefGoogle Scholar
  75. Rattan, S.I.S. (2000) Ageing, gerontogenes, and hormesis. Ind. J.Exp. Biol., 38: 1–5.Google Scholar
  76. Rattan, S.I.S. (2001) Applying hormesis in aging research and therapy. Hum. Exp. Toxicol., 20: 281–285.PubMedCrossRefGoogle Scholar
  77. Rattan, S.I.S. (2002) N6-furfuryladenine (kinetin) as a potential anti-aging molecule. J. Anti-aging Med., 5: 113–116.CrossRefGoogle Scholar
  78. Rattan, S.I.S., ed. Modulating Aging and Longevity. 2003, Kluwer Academic Publ.: Dordrecht, The Netherlands.Google Scholar
  79. Rattan, S.I.S. and Clark, B.F.C. (1994) Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem. Biophys. Res. Commun., 201: 665–672.PubMedCrossRefGoogle Scholar
  80. Rattan, S.I.S. and Clark, B.F.C. (2005) Understanding and modulating ageing. IUBMB Life, 57: 297–304.PubMedGoogle Scholar
  81. Rogina, B., Reenan, R.A., Nilsen, S.P. and Helfand, S.L. (2000) Extended life-span conferred by cotransporter gene mutation in Drosophila. Science, 290: 2137–2140.PubMedCrossRefGoogle Scholar
  82. Rose, M.R. (1991) Evolutionary Biology of Aging. New York: Oxford University Press. 220.Google Scholar
  83. Roth, G.S., Mattison, J.A., Ottinger, M.A., Chachich, M.E., et al. (2004) Aging in Rhesus monkeys: relevance to human health interventions. Science, 305: 1423–1426.PubMedCrossRefGoogle Scholar
  84. Safwat, A. (2000) The role of low-dose total body irradiation in treatment of non-Hodgkins lymphoma: a new look at an old method. Radiother. Oncol., 56: 1–8.PubMedCrossRefGoogle Scholar
  85. Singh, A.M.F. (2002) Exercise comes of age: rationale and recommendations for geriatric exercise prescription. J. Gerontol. Med. Sci., 57A: M262–M282.Google Scholar
  86. Singh, R., Kølvraa, S., Bross, P., Gregersen, N., et al. (2004) Association between low self-rated health and heterozygosity for -110A-C polymorphism in the promoter region of HSP70-1 in aged Danish twins. Biogerontology, 5: 169–176.PubMedCrossRefGoogle Scholar
  87. Tan, Q., De Benedictis, G., Yashin, A.I., Bonafe, M., et al. (2001) Measuring the genetic influence in modulating the humanlife span: gene-environment interaction and the sex-specificgenetic effect. Biogerontology, 2: 141–53.PubMedCrossRefGoogle Scholar
  88. Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., et al. (2001) Amutant Drosophila insulin receptor homolog that extendslife-span and impairs neuroendocrine function. Science, 292: 107–110.PubMedCrossRefGoogle Scholar
  89. Tyner, S.D., Venkatachalam, S., Choi, J., Jones, S., et al. (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature, 415: 45–53.PubMedCrossRefGoogle Scholar
  90. Verbeke, P., Siboska, G.E., Clark, B.F.C. and Rattan, S.I.S. (2000) Kinetin inhibits protein oxidation and glyoxidation invitro. Biochem. Biophys. Res. Commun., 276: 1265–1267.PubMedCrossRefGoogle Scholar
  91. Vigh, L., Literati, P.N., Horváth, I., Török, Z., et al. (1997) Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects.Nature Medicine, 3: 1150–1154.PubMedCrossRefGoogle Scholar
  92. Vigh, L., Maresca, B. and Harwood, J.L. (1998) Does the membrane’s physical state control the expression of heat shockand other genes? TIBS, 23: 369–374.PubMedGoogle Scholar
  93. Vijg, J. (2000) Somatic mutations and aging: a re-evaluation. Mutat. Res., 447: 117–135.PubMedGoogle Scholar
  94. Warner, H. (2005) Longevity genes: from primitive organisms tohumans. Mech. Age. Dev., 126: 235–242.CrossRefGoogle Scholar
  95. Weindruch, R. (1996) Calorie restriction and aging. Sci. Amer., 274: 32–38.CrossRefGoogle Scholar
  96. Westerheide, S.D., Bosman, J.D., Mbadugha, B.N.A., Kawahara, T.L.A., et al. (2004) Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem., 279: 56053–56060.PubMedCrossRefGoogle Scholar
  97. Wood, J.G., Rogina, B., Lavu, S., Howitz, K.T., et al. (2004) Sirtuin activators mimic caloric restricition and delay ageing inmetazoans. Nature, 430: 686–689.PubMedCrossRefGoogle Scholar
  98. Yokoyama, K., Fukumoto, K., Murakami, T., Harada, S., et al. (2002) Extended longevity of Caenorhabditis elegans byknocking in extra copies of hsp70F, a homolog of mot-2(mortalin)/mthsp70/Grp75. FEBS Lett., 516: 53–57.PubMedCrossRefGoogle Scholar
  99. Yu, C.-E., Oshima, J., Fu, Y.-H., Wijsman, E.M., et al. (1996) Positional cloning of the Werner’s syndrome gene. Science, 272: 258–262.PubMedCrossRefGoogle Scholar
  100. Yu, B.P. and Chung, H.Y. (2001) Stress resistance by caloric restriction for longevity. Ann. N.Y. Acad. Sci., 928: 39–47.PubMedCrossRefGoogle Scholar
  101. Yu, B.P. (1999) Approaches to anti-aging intervention: the promises and the uncertainities. Mech. Ageing Dev., 111: 73–87.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Suresh I.S. Rattan
    • 1
  1. 1.Laboratory of Cellular Ageing, Danish Centre for Molecular Gerontology, Department of Molecular BiologyUniversity of Aarhus

Personalised recommendations