Proof in C17 Algebra

  • Brendan Larvor
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 5)


This paper considers the birth of algebraic proof by looking at the works of Cardano, Viète, Harriot and Pell. The transition from geometric to algebraic proof was mediated by appeals to the Eudoxan theory of proportions in book V of Euclid. The crucial notational innovation was the development of brackets. By the middle of the seventeenth century, geometric proof was unsustainable as the sole standard of rigour because mathematicians had developed such a number and range of techniques that could not be justified in geometric terms.


Algebra proof Cardano Viète Harriot Pell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cardano, G. (1570). Opvs novvm de proportionibvs nvmerorvm, motvvm, pondervm, sonorvm, aliarvmqve rervm mensurandarum, non solúm geometrico more stabilitum, sed etiam uarijs experimentis & obseruationibus rerum in natura ... Praeterea Artis magnae; sive, De regvlis algebraicis, liber vnvs, abstrvsissimvs & inexhaustus plane totius arithmeticae thesaurus, ab authore recens multis in locis recognitus & auctus. Item, De aliza regvla liber, hoc est, algebraicae logisticae suae, numeros recondita numerandi subtilitate, secundum geometricas quantitates inquirentis, necessaria coronis, nunc demum in lucem edita. Basileae, Ex officina Henricpetrina.Google Scholar
  2. Girard, A. and D. B. d. Haan (1884). Invention nouvelle en l’algáebre. Leiden,, Imprimâe chez Murâe fráeres.Google Scholar
  3. Harriot, T. (1631). Artis analyticae praxis, ad Aequationes algebraicas nova, expedita & generali methodo resolvendas. London, Robert Barker.Google Scholar
  4. Larvor, B. (2001). “Old Maps, Crystal Spheres and the Cartesian Circle.” Graduate Faculty Philosophy Journal 22(2).Google Scholar
  5. Leibniz, G. W. and K. I. Gerhardt (1960). Die philosophischen Schriften von Gottfried Wilhelm Leibniz. Hrsg. von C.I. Gerhardt. Hildesheim, G. Olms Verlagsbuchhandlung.Google Scholar
  6. Mancosu, P. (1992). “Aristotelian Logic and Euclidean Mathematics: Seventeenth-century Developments of the Quaestio de Certitudine Mathematicarum.Studies in the History and Philosophy of Science 23(2): 241-265.CrossRefGoogle Scholar
  7. Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York; Oxford, Oxford University Press.Google Scholar
  8. Pycior, H. M. (1997). Symbols, impossible numbers, and geometric entanglements : British algebra through the commentaries on Newton’s Universal arithmetick. Cambridge, U.K ; New York, N.Y., Cambridge University Press.CrossRefGoogle Scholar
  9. Rahn Johann, H., T. Brancker, et al. (1668). An introduction to Algebra, translated out of the High-Dutch into English, by T. Branckner ... Much altered and augmented by D. P. [i.e. Dr. John Pell.] Also a table of Odd Numbers less than one hundred thousand, shewing those that are incomposit, and resolving the rest into their factors or coefficients, &c.London, W. G. for Moses Pitt.Google Scholar
  10. Sasaki, C. (1985). “The Acceptance of the Theory of Proportion in the Sixteenth and Seventeenth Centuries–Barrow’s reaction to the Analytic Mathematics.” Historia Scientiarum 29: 83-116.Google Scholar
  11. Vietae, F. (1646). Opera mathematica in unam volumen congesta ac recognita. Lugdunum Batavorum,, Elzevir.Google Scholar
  12. Viete, F. o. and T. R. Witmer (1983). The analytic art: nine studies in algebra, geometry and trigonometry from the Opus restitutae mathematicae analyseos, seu algebra nova. Kent (Ohio), Kent State University Press.Google Scholar
  13. Wallis, John (1685). A treatise of algebra, both historical and practical. London: John Playford.Google Scholar
  14. Witmer, T. R. and G. Cardano (1968). The great art: or, The rules of algebra. Cambridge, Massachusetts; London, the M.I.T. Press.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Brendan Larvor
    • 1
  1. 1.University of HertfordshireUK

Personalised recommendations