Skip to main content

Stochastic Diffusion of Finite Inertia Particles in Non-Homogeneous Turbulence

  • Conference paper
IUTAM Symposium on Computational Approaches to Multiphase Flow

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 81))

  • 1499 Accesses

Abstract

Several Continuous Random Walk (CRW) models were constructed to predict turbulent particle diffusion based only on mean Eulerian fluid statistics. The particles were injected near the wall (y +=4) of a turbulent boundary layer that is strongly anisotropic and inhomogeneous near the wall. To assess the performance of the models for wide range of particle inertias (Stroke numbers), the CRW results were compared to particle diffusion statistics gathered from a Direct Numerical Simulation (DNS). The results showed that accurate simulation required a modified (non-dimensionalized) Markov chain for the large gradients in turbulence based on fluid-tracer simulations. For finite-inertia particles, a modified drift correction for the Markov chain (developed herein to account for Strokes number effects) was critical to avoiding non-physical particle collection in low-turbulence regions. In both cases, inclusion of anisotropy in the turbulent kinetic energy was found to be important, but the influence of off-diagonal terms was found to be weak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Loth, E., 2000, Numerical approaches for motion of dispersed particles, droplets, and bubbles, Progress in Energy and Combustion Science 26, 161–223.

    Article  Google Scholar 

  2. MacInnes, J.M. and Bracco, F.V., 1992, Stochastic particle dispersion modeling and the tracer-particle limit, Physics of Fluids A 12, 2809–2824.

    Article  Google Scholar 

  3. Legg, B.J. and Raupach, M.R., 1982, Markov-chain simulation of particle dispersion in inhomogeneous flows: The mean drift velocity induced by a gradient in the Eulerian velocity variance, Boundary-Layer Meteorology 24, 3–13.

    Article  Google Scholar 

  4. Bocksell, T.L. and Loth, E., 2001, Random walk models for particle diffusion in free-shear flows, AIAA Journal 39(6), 1086–1096.

    Article  Google Scholar 

  5. Iliopoulos, I. and Hanratty, T.J., 1999, Turbulent dispersion in a non-homogeneous field, Journal of Fluid Mechanics 392, 45–71.

    Article  MATH  Google Scholar 

  6. Spalart, P.R. and Watmuff, J.H., 1993, Experimental and numerical study of a turbulent boundary layer with pressure gradients, Journal of Fluid Mechanics 249, 337–371.

    Article  Google Scholar 

  7. Bocksell, T.L., 2004, Numerical simulation of turbulent particle diffusion, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL.

    Google Scholar 

  8. Dorgan, A.J., 2003, Boundary layer dispersion of near-wall injected particles of various inertias, M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL.

    Google Scholar 

  9. Hinze, J.O., 1975, Turbulence, McGraw-Hill, New York.

    Google Scholar 

  10. Kallio, G.A. and Reeks, M.W., 1989, A numerical simulation of particle deposition in turbulent boundary layers, International Journal of Multiphase Flow 15(3), 433–446.

    Article  Google Scholar 

  11. Barton, I.E., 1996, Exponential-Lagrangian tracking schemes applied to Stokes law, Journal of Fluids Engineering 118, 85–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Loth, E., Bocksell, T.L. (2006). Stochastic Diffusion of Finite Inertia Particles in Non-Homogeneous Turbulence. In: Balachandar, S., Prosperetti, A. (eds) IUTAM Symposium on Computational Approaches to Multiphase Flow. Fluid Mechanics and Its Applications, vol 81. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4977-3_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4977-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4976-7

  • Online ISBN: 978-1-4020-4977-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics