Skip to main content

The Effect of Surfactant on Rising Bubbles

  • Conference paper

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 81))

Abstract

The rising velocity of a spherical bubble in contaminated water can be less than a half of that in pure water. This is explained in terms of the Marangoni effect caused by the adsorption of surfactants in liquid phase on bubble surface. In this study, we conduct a numerical simulation with different surfactant species and bulk concentrations, and the dependence of their properties on the rising velocity of a bubble is analyzed through comparison with experiments. The simulation results show good agreement with the experimental ones, and the surface velocity and the concentrations are estimated. We also develop a simulation method for solving bubble deformation in the presence of a surfactant. We succeed in reproducing the conglobation effect of a bubble in surfactant solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duineveld, P.C., 1995, J. Fluid Mech. 292, 325–332.

    Article  Google Scholar 

  2. Frumkin, A. and Levich, V., 1947, Zhur. Fiz. Khim. 21, 1183 [in Russian].

    Google Scholar 

  3. Sussman, M., Smereka, P. and Osher, S., 1994, J. Comput. Phys. 114, 146–159.

    Article  Google Scholar 

  4. Unverdi, S.O. and Tryggvason G., 1992, J. Comput. Phys. 100, 25–37.

    Article  Google Scholar 

  5. Yabe, T., Xiao, F. and Utsumi, T., 2001, J. Comput. Phys. 169, 556–593.

    Article  MathSciNet  Google Scholar 

  6. Cuenot, B., Magnaudet, J. and Spennato, B., 1997, J. Fluid Mech. 339, 25–53.

    Article  Google Scholar 

  7. Liao, Y. and McLaughlin, J.B., 2000, J. Colloid Interface Sci. 224, 297–310.

    Article  Google Scholar 

  8. Takagi, S., Prosperetti, A. and Matsumoto, Y., 1994, Phys. Fluids 6, 3186–3188.

    Article  Google Scholar 

  9. Ryskin, G. and Leal, L.G., 1984, Part 1, Part 2, J. Fluid Mech. 148, 1–35.

    Article  Google Scholar 

  10. Mei, R., Klausner, J.F. and Lawrence, C.J., 1994, Phys. Fluids 6, 418–420.

    Article  Google Scholar 

  11. Mei, R., 1993, Int. J. Multiphase Flow 19, 509–525.

    Article  Google Scholar 

  12. Fainerman, V.B. and Lylyk, S.V., 1982, Kolloidn. Zh. 44, 538–544.

    Google Scholar 

  13. Borwankar, R.P. and Wasan, D.T., 1983, Chem. Eng. Sci. 38, 1637–1649.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Matsumoto, Y., Uda, T., Takagi, S. (2006). The Effect of Surfactant on Rising Bubbles. In: Balachandar, S., Prosperetti, A. (eds) IUTAM Symposium on Computational Approaches to Multiphase Flow. Fluid Mechanics and Its Applications, vol 81. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4977-3_31

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4977-3_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4976-7

  • Online ISBN: 978-1-4020-4977-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics