Skip to main content

Fluctuating Immersed Material (FIMAT) Dynamics for the Direct Simulation of the Brownian Motion of Particles

  • Conference paper

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 81))

Abstract

In the paper a Direct Numerical Simulation (DNS) scheme, named Fluctuating Immersed MATerial (FIMAT) dynamics, for the Brownian motion of particles is presented. In this approach the thermal fluctuations are included in the fluid equations via random stress terms. Solving the fluctuating hydrodynamic equations coupled with the particle equations of motion results in the Brownian motion of the particles. There is no need to add a random force term in the particle equations. The particles acquire random motion through the hydrodynamic force acting on its surface from the surrounding fluctuating fluid. The random stresses in the fluid equations are easy to calculate unlike the random terms in the conventional Brownian Dynamics (BD) type approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brady, J.F. and Bossis, G., 1988, Stokesian dynamics, Annual Rev. Fluid Mech. 20, 111–157.

    Article  Google Scholar 

  2. Chen, Y., Sharma, N. and Patankar, N.A., 2005, Fluctuating Immersed Material (FIMAT) dynamics for the direct simulation of the Brownian motion of particles, J. Fluid Mech., submitted.

    Google Scholar 

  3. Ermak, D.L. and McCammon, J.A., 1978, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys. 69(4), 1352–1360.

    Article  Google Scholar 

  4. Glowinski, R., Pan, T.W., Hesla, T.I. and Joseph, D.D., 1999, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow 25, 755–794.

    Article  Google Scholar 

  5. Grmela, M. and Öttinger, H.C., 1997, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E 56(6), 6620–6632.

    Article  MathSciNet  Google Scholar 

  6. Hauge, E.H. and Martin-Löf, A., 1973, Fluctuating hydrodynamics and Brownian motion, J. Stat. Phys. 7(3), 259–281.

    Article  Google Scholar 

  7. Hasimoto, H., 1959, On the periodic fundamental solution of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid Mech. 5, 317–328.

    Article  MathSciNet  Google Scholar 

  8. Hu, H.H., Joseph, D.D. and Crochet, M.J., 1992, Direct numerical simulation of fluid particle motions, Theoret. Comput. Fluid Dynam. 3, 285–306.

    Article  Google Scholar 

  9. Hu, H.H., Patankar, N.A. and Zhu, M.Y., 2001, Direct numerical simulations of fluid solid systems using Arbitrary Lagrangian—Eulerian technique, J. Comput. Phys. 169, 427–462.

    Article  MathSciNet  Google Scholar 

  10. Ladd, A.J.C., 1993, Short time motion of colloidal particles: Numerical simulation via a fluctuating Lattice-Boltzmann equation, Phys. Rev. Lett. 70(9), 1339–1342.

    Article  Google Scholar 

  11. Landau, L.D. and Lifshitz, E.M., 1959, Fluid Mechanics, Pergamon Press, London.

    Google Scholar 

  12. Öttinger, H.C. and Grmela, M., 1997, Dynamics and thermodynamics of complex fluids. II. Development of a general formalism, Phys. Rev. E 56(6), 6633–6655.

    Article  MathSciNet  Google Scholar 

  13. Patankar, N.A., 2001, A formulation for fast computations of rigid particulate flows, Center for Turbulence Research, Annual Research Briefs, 185–196.

    Google Scholar 

  14. Patankar, N.A., 2002, Direct Numerical Simulation of moving charged, flexible bodies with thermal fluctuations, in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems, pp. 32–35.

    Google Scholar 

  15. Patankar, N.A., Singh, P., Joseph, D.D., Glowinski, R. and Pan, T.W., 2000, A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow 26, 1509–1524.

    Article  Google Scholar 

  16. Serrano, M. and Espaôol, P., 2001, Thermodynamically consistent mesoscopic fluid particle model, Phys. Rev. E 64(4), 046115.

    Article  Google Scholar 

  17. Serrano, M., Gianni, D.F., Espaôol, P., Flekkøy, E.G. and Coveney, P.V., 2002, Mesoscopic dynamics of Voronoi fluid particles, J. Phys. A: Math. Gen. 35(7), 1605–1625.

    Article  Google Scholar 

  18. Sharma, N. and Patankar, N.A., 2004, Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations, J. Comput. Phys. 201, 466–486.

    Article  Google Scholar 

  19. Sharma, N. and Patankar, N.A., 2005, A fast computation technique for the Direct Numerical Simulation of rigid particulate flows, J. Comput. Phys. 205, 439–457.

    Article  Google Scholar 

  20. Sharma, N., Chen, Y. and Patankar, N.A., 2005, A Distributed Lagrange Multiplier method based computational method for the simulation of particulate Stokes flow, Comput. Meth. Appl. Mech. Engng. 194, 4716–4730.

    Article  Google Scholar 

  21. Zick, A.A. and Homsy, G.M., 1982, Stokes flow through periodic arrays of spheres, J. Fluid Mech. 115, 13–26.

    Article  Google Scholar 

  22. Zwanzig, R., 1964, Hydrodynamic fluctuations and Stokes’ law friction, J. Res. Natl. Bur. Std. (U.S.) 68B, 143–145.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Chen, Y., Sharma, N., Patankar, N.A. (2006). Fluctuating Immersed Material (FIMAT) Dynamics for the Direct Simulation of the Brownian Motion of Particles. In: Balachandar, S., Prosperetti, A. (eds) IUTAM Symposium on Computational Approaches to Multiphase Flow. Fluid Mechanics and Its Applications, vol 81. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4977-3_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4977-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4976-7

  • Online ISBN: 978-1-4020-4977-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics