Skip to main content

THE PROBLEM OF MULTIPLE STRESSORS INCLUDING LOW DOSES OF RADIATION IN THE ENVIRONMENT

  • Conference paper
Radiation Risk Estimates in Normal and Emergency Situations

Part of the book series: NATO Security through Science Series ((NASTB))

  • 992 Accesses

Abstract

This paper addresses the issue of multiple stressors in the environment all acting by common mechanisms, to produce a variety of non-targeted effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Calabrese E.J., 2005, Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut. 138: 379–411.

    Article  Google Scholar 

  • Clutton, S.M., Townsend, K.M., Walker, C., Ansell J.D. and Wright, E.G., 1996, Radiationinduced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis, 17: 1633–1639.

    CAS  Google Scholar 

  • Emerit, I., Arutyunyan, R., Oganesian, N., Levy, A., Cerniavsky, L., Sarkisian, T., Pogossian, A. and Asrian, K., 1995, Radiation-induced clastogenic factors; Anticlastogenic effect of Ginkgo biloba extract: Free Radic. Biol. Med. 18: 985–991.

    Article  CAS  Google Scholar 

  • Kahn, S.H. and Emerit, I., 1985, Lipid peroxidation products and clastogenic factors in culture media of human leukocytes exposed to the tumour promoter phorbol-myristateacetate: Free Radic. Biol. Med. 1: 443–449.

    Google Scholar 

  • Limoli, C.L., Hartmann, A., Shephard, L., Yang, C.R., Boothman, D.A., Bartholomew, J.A., and Morgan, W.F., 1998, Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity. Cancer Res. 58 :3712–3718.

    CAS  Google Scholar 

  • Little J.B. and Morgan W.F., (Guest editors), 2003, Special issue of Oncogene., 13(22: 6977.

    Google Scholar 

  • Little, J.B., Nagasawa, H., Li, G.C. and Chen, D.J., 2003. Involvement of the nonhomologous end joining DNA repair pathway in the bystander effect for chromosomal aberrations. Radiat Res., 159: 262–267.

    Article  CAS  Google Scholar 

  • Liu, Z., Mothersill, C.E., McNeill F.E., Lyng F.M., Byun, S.H., Seymour C.B., Prestwich W.V., 2005, A dose threshold for bystander effect, Radiat. Res. (submitted)

    Google Scholar 

  • Lorimore, S.A. and Wright E.G., 2003, Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review. Int. J. Radiat. Biol. 79: 15–25.

    CAS  Google Scholar 

  • Lyng F.M., Seymour C.B., Mothersill C., 2000, Production of a signal by irradiated cells which leads to a response in unirradiated cells characteristic of initiation of apoptosis. Br J Cancer 83: 1223–1230.

    Article  CAS  Google Scholar 

  • Lyng F.M., Seymour C.B., Mothersill C., 2002a, Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystanderinduced genomic instability? Radiat Res. 157: 365–370.

    Article  CAS  Google Scholar 

  • Lyng, F.M., Seymour, C.B., Mothersill, C., 2002b, Early events in the apoptotic cascade initiated in cells treated with medium from the progeny of irradiated cells. Radiat. Prot. Dosimetry, 99: 169–172,

    CAS  Google Scholar 

  • Maguire P., Mothersill C., Seymour C., Lyng F.M., 2005, Medium from irradiated cells induces dose-dependent mitochondrial changes and BCL2 responses in unirradiated human keratinocytes. Radiat Res. 163: 384–390.

    Article  CAS  Google Scholar 

  • Morgan W.F., 2003, Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 159: 567–580.

    Article  CAS  Google Scholar 

  • Mothersill C., Seymour C.B., 2001, Radiation-induced bystander effects: past history and future directions. Radiat Res. 155: 759–767.

    Article  CAS  Google Scholar 

  • Mothersill C., Lyng F., Mulford A., Seymour C., Cottell D., Lyons M., Austin B., 2001, Effect of low doses of ionizing radiation on cells cultured from the hematopoietic tissue of the Dublin Bay prawn, Nephrops norvegicus. Radiat Res. 156: 241–250.

    Article  CAS  Google Scholar 

  • Mothersill C., Rea D., Wright E.G., Lorimore S.A., Murphy D., Seymour C.B., O’Malley K., 2001, Individual variation in the production of a ‘bystander signal’ following irradiation of primary cultures of normal human urothelium. Carcinogenesis. 22: 1465–1471.

    Article  CAS  Google Scholar 

  • Mothersill C., Seymour C.B., Joiner M.C., 2002, Relationship between radiation-induced low-dose hypersensitivity and the bystander effect. Radiat Res. 157: 526–532.

    Article  CAS  Google Scholar 

  • Mothersill, C., Seymour R.J. and Seymour C.B. (2004), Bystander effects in repair-deficient cell lines, Radiat. Res., 161, 256–263,

    Article  CAS  Google Scholar 

  • Mothersill C. and Seymour C.B., 2004, Radiation-induced bystander effects – implications for cancer, Nature Rev. Cancer, 4: 158–164.

    CAS  Google Scholar 

  • Mothersill C., Lyng F., Seymour C., Maguire P., Lorimore S., Wright E., 2005, Genetic factors influencing bystander signaling in murine bladder epithelium after low-dose irradiation in vivo. Radiat Res. 163: 391–399.

    Article  CAS  Google Scholar 

  • Nagasawa, H., Huo L. and Little, J.B., 2003, Increased bystander mutagenic effect in DNA double-strand break repair-deficient mammalian cells. Int. J. Radiat. Biol. 79: 35–41,

    CAS  Google Scholar 

  • Schettino G., Folkard M., Michael B.D., Prise K.M., 2005, Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused c(k) x rays. Radiat Res. 163: 332–336.

    Article  CAS  Google Scholar 

  • Seymour, C.B. and Mothersill, C., 2000, Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose–response curve: Radiat. Res. 153: 508–511.

    Article  CAS  Google Scholar 

  • Schollnberger H., Mitchel R.E., Azzam E.I., Crawford-Brown D.J., Hofmann W., 2002, Explanation of protective effects of low doses of gamma-radiation with a mechanistic radiobiological model. Int J Radiat Biol. 78: 1159–1173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

MOTHERSILL, C., SEYMOUR, C. (2006). THE PROBLEM OF MULTIPLE STRESSORS INCLUDING LOW DOSES OF RADIATION IN THE ENVIRONMENT. In: Cigna, A.A., Durante, M. (eds) Radiation Risk Estimates in Normal and Emergency Situations. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4956-0_20

Download citation

Publish with us

Policies and ethics