Skip to main content

Third-Order Nonlinear Optical Response of Metal Nanoparticles

  • Chapter

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 1))

Abstract

We present a review of the main results reported in the literature regarding the third-order nonlinear optical response of nanocomposite media consisting of noble metal nanoparticles surrounded by a dielectric host. This phenomenon, known as optical Kerr effect, can be characterized by the intensity-dependent complex optical index of the material or, equivalently, its complex third-order susceptibility. The theoretical basis of the linear and nonlinear optical properties of metal nanoparticles and nanocomposite media are described first. The different third-order optical phenomena which have been observed in such materials are then examined. The dependence of the nonlinear properties on morphological parameters – nature of the dielectric host, metal concentration, particle size and shape – as well as on laser excitation characteristics – wavelength, intensity, pulsewidth – will be explained and illustrated by selected experimental results. The final part points out the important role played by thermal effects in the nonlinear optical response

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrenreich, H., Philipp, H.R.: Optical properties of Ag and Cu. Phys. Rev. 128, 1622–1629 (1962)

    Article  ADS  CAS  Google Scholar 

  2. Théye, M.L.: Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B 2, 3060–3078 (1970)

    Article  ADS  Google Scholar 

  3. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  CAS  Google Scholar 

  4. Aspnes, D.E., Kinsbron, E., Bacon, D.D.: Optical properties of Au: Sample effects. Phys. Rev. B 21, 3290–3299 (1980)

    Article  ADS  CAS  Google Scholar 

  5. Innes, R.A., Sambles, J.R.: Optical characterisation of gold using surface plasmon-polaritons. J. Phys. F: Metal Phys. 17, 277–287 (1987)

    Article  ADS  CAS  Google Scholar 

  6. Nash, D.J., Sambles, J.R.: Surface plasmon-polariton study of the optical dielectric function of silver. J. Mod. Opt. 43, 81–91 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Palik, E.D. (ed.): (1985/1991) Handbook of Optical Constants of Solids, vols. I and II, Academic, New York

    Google Scholar 

  8. Ashkroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Publishing, Philadelphia (1976)

    Google Scholar 

  9. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1983)

    Google Scholar 

  10. Cooper, B.R., Ehrenreich, H., Philipp, H.R.: Phys. Rev. 138, A494–A507 (1965)

    Article  Google Scholar 

  11. Rosei, R., Lynch, D.W.: Thermomodulation Spectra of Al, Au, and Cu. Phys. Rev. B 5, 3883–3894 (1972)

    Article  ADS  Google Scholar 

  12. Rosei, R.: Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory. Phys. Rev. B 10, 474–483 (1974)

    Article  ADS  CAS  Google Scholar 

  13. Rosei, R., Culp, C.H., Weaver, J.H.: Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental. Phys. Rev. B 10, 484–489 (1974)

    Article  ADS  CAS  Google Scholar 

  14. Mie, G.: Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys. (Leibzig) 25, 377 (1908)

    ADS  CAS  Google Scholar 

  15. Born, M., Wolf, E.: Principles of Optics. University Press, Cambridge (1999)

    Google Scholar 

  16. Bohren, C.F., Huffman, D.P.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)

    Google Scholar 

  17. Russell, B.K., Mantovani, J.G., Anderson, V.E., Warmack, R.J., Ferrell, T.L.: Experimental test of the Mie theory for microlithographically produced silver spheres. Phys. Rev. B 35, 2151–2154 (1987)

    Article  ADS  CAS  Google Scholar 

  18. Kolwas, K., Demianiuk, S., Kolwas, M.: Optical excitation of radius-dependent plasmon resonances in large metal clusters. J. Phys. B: At. Mol. Opt. Phys. 29, 4761–4770 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Verlag, Berlin, Heidelberg (1995)

    Google Scholar 

  20. Fedrigo, S., Harbich, W., Buttet, J.: Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys. Rev. B 47, 10706–10715 (1993)

    Article  ADS  CAS  Google Scholar 

  21. Kawabata, A., Kubo, R.: Electronic properties of fine metallic particles. II Plasma resonance absorption. J. Phys. Soc. Jpn. 21, 1765–1772 (1966)

    Article  ADS  CAS  Google Scholar 

  22. Yannouleas, C., Broglia, R.A.: Landau damping and wall dissipation in large metal clusters. Ann. Phys. N. Y. 217, 105–141 (1992)

    Article  ADS  CAS  Google Scholar 

  23. Persson, B.N.J.: Polarizability of small spherical metal particles: influence of the matrix environment. Surf. Sci. 281, 153–162 (1993)

    Article  CAS  Google Scholar 

  24. Kasperovich, V., Kresin, V.V.: Ultraviolet photoabsorption spectra of silver and gold nanoclusters. Philos. Mag. B 78, 385–396 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Palpant, B., Prével, B., Lermé, J., Cottancin, E., Pellarin, M., Treilleux, M., Perez, A., Vialle, J.L., Broyer, M.: Optical properties of gold clusters in the size range 2–4 nm. Phys. Rev. B 57, 1963–1970 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Lermé, J., Palpant, B., Prével, B., Pellarin, M., Treilleux, M., Vialle, J.L., Perez, A., Broyer, M.: Quenching of the size effects in free and matrix-embedded silver clusters. Phys. Rev. Lett. 80, 5105–5108 (1998)

    Article  ADS  Google Scholar 

  27. Celep, G., Cottancin, E., Lermé, J., Pellarin, M., Arnaud, L., Huntzinger, J.R., Broyer, M., Palpant, B., Boisron, O., Mélinon, P.: Size evolution of the optical properties of copper clusters embedded in alumina: an experimental and theoretical study of size dependence. Phys. Rev. B 70, 165409 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Quinten, M.: Optical constants of gold and silver clusters in the spectral range between 1.5eV and 4.5 eV. Z. Phys. B 101, 211–217 (1996)

    Article  CAS  Google Scholar 

  29. Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)

    Article  CAS  Google Scholar 

  30. Lee, M., Chae, L., Lee, K.C.: Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films. Nanostruct. Mater. 11, 195–201 (1999)

    Article  CAS  Google Scholar 

  31. Dalacu, D., Martinu, L.: Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films. J. Appl. Phys. 87, 228–235 (2000)

    Article  ADS  CAS  Google Scholar 

  32. Cai, W., Hofmeister, H., Dubiel, M.: Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver particles. Eur. Phys. J. D 13, 245–253 (2001)

    Article  ADS  CAS  Google Scholar 

  33. Sasai, J., Hirao, K.: Relaxation behavior of nonlinear optical response in borate glasses containing gold nanoparticles. J. Appl. Phys. 89, 4548–4553 (2001)

    Article  ADS  CAS  Google Scholar 

  34. Klar, T., Perner, M., Grosse, S., von Plessen, G., Spirkl, W., Feldmann, J.: Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80, 4249–4252 (1998)

    Article  ADS  CAS  Google Scholar 

  35. Grésillon, S., Aigouy, L., Boccara, A.C., Rivoal, J.C., Quelin, X., Desmarest, C., Gadenne, P., Shubin, V.A., Sarychev, A.K., Shalaev, V.M.: Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999)

    Article  ADS  Google Scholar 

  36. Stroud, D., Pan, F.P.: Self-consistent approach to electromagnetic wave propagation in composite media: Application to model granular metals. Phys. Rev. B 17, 1602–1610 (1978)

    Article  ADS  CAS  Google Scholar 

  37. Niklasson, G.A., Granqvist, C.G.: Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films. J. Appl. Phys. 55, 3382–3410 (1984)

    Article  ADS  CAS  Google Scholar 

  38. See, for a large review of the advances in this field, the proceedings of the conferences on Electrical Transport and Optical Properties of Inhomogeneous Media: (2003) ETOPIM 1, edited by Garland, J.C., Tanner, D.B. (AIP, New York, 1978); ETOPIM 2, edited by Lafait, J., Tanner, D.B.: Physica A 157 (1) (1989); ETOPIM 3, edited by Mochan W.L., Barrera, R.G.: Physica A 207 (1–3) (1994); ETOPIM 4, edited by Dykhne, A.M., Lagarkov, A.N., Sarychev, A.K.: Physica A 24 (1–2) (1997); ETOPIM 5, edited by Hui, P.M., Sheng, P., Tang, L.-H.: Physica B 279 (1–3) (2000); ETOPIM 6, edited by Milton, G.W., Golden, K.M., Dobson, D., Vardeny, A.Z.: Physica B 338 (1–3)

    Google Scholar 

  39. Maxwell-Garnett, J.C.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London 203, 385 (1904)

    ADS  Google Scholar 

  40. Bruggeman, D.A.G.: (1935) The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann. Phys. (Leipzig) 24, 636–664 (1935); 665-679

    ADS  CAS  Google Scholar 

  41. Marton, J.P., Lemon, J.R.: Optical properties of aggregated metal systems. I. Theory. Phys. Rev. B 4, 271–280 (1971)

    Article  ADS  Google Scholar 

  42. Marton, J.P., Lemon, J.R.: Optical properties of aggregated metal systems: Real metals. J. Appl. Phys. 44, 3953–3959 (1973)

    Article  ADS  CAS  Google Scholar 

  43. Gehr, R.J., Boyd, R.W.: Optical properties of nanostructured optical materials. Chem. Mater. 8, 1807–1819 (1996)

    Article  CAS  Google Scholar 

  44. Polder, D., van Santen, J.H.: The effective permeability of mixtures of solids. Physica 12, 257 (1946)

    Article  ADS  Google Scholar 

  45. Cohen, R.W., Cody, G.D., Coutts, M.D., Abeles, B.: Optical properties of granular silver and gold films. Phys. Rev. B 8, 3689–3701 (1973)

    Article  ADS  CAS  Google Scholar 

  46. Foss, Jr., C.A., Hornyak, G.L., Stockert, J.A., Martin, C.R.: Template-synthesized nanoscopic gold particles: Optical spectra and the effects of particle size and shape. J. Phys. Chem. 98, 2963–2971 (1994)

    Article  CAS  Google Scholar 

  47. Granqvist, C.G., Hunderi, O.: Optical properties of ultrafine gold particles. Phys. Rev. B 16, 3513–3534 (1977)

    Article  ADS  CAS  Google Scholar 

  48. Neeves, A.E., Birnboim, M.H.: Composite structures for the enhancement of nonlinear optical materials. Opt. Lett. 13, 1087–1089 (1988); Composite structures for the enhancement of nonlinear-optical susceptibility. J. Opt. Soc. Am. B 6, 787–796 (1989)

    Google Scholar 

  49. Zhang, X., Stroud, D.: Numerical studies of the nonlinear properties of composites. Phys. Rev. B 49, 944–955 (1994)

    Article  ADS  CAS  Google Scholar 

  50. Fedotov, V.A., Emel’yanov, V.I., MacDonald, K.F., Zheludev, N.I.: Optical properties of closely packed nanoparticle films: spheroids and nanoshells. J. Opt. A: Pure Appl. Opt. 6, 155–160 (2004)

    Article  ADS  CAS  Google Scholar 

  51. Hui, P.M., Xu, C., Stroud, D.: Second-harmonic generation for a dilute suspension of coated particles. Phys. Rev. B 69, 014203 (2004)

    Article  ADS  CAS  Google Scholar 

  52. Chýlek, P., Srivastava, V.: Dielectric constant of a composite inhomogeneous medium. Phys. Rev. B 27, 5098–5106 (1983)

    Article  ADS  Google Scholar 

  53. Barrera, R.G., Villaseñor–González, P., Mochán, W.L., Monsivais, G.: Effective dielectric response of polydispersed composites. Phys. Rev. B 41, 7370–7376 (1990)

    Article  ADS  Google Scholar 

  54. Spanoudaki, A., Pelster, R.: Effective dielectric properties of composite materials: The dependence on the particle size distribution. Phys. Rev. B 64, 064205 (2001)

    Article  ADS  CAS  Google Scholar 

  55. Ducourtieux, S., Gresillon, S., Boccara, A.C., Rivoal, J.C., Quelin, X., Gadenne, P., Drachev, V.P., Bragg, W.D., Safonov, V.P., Podolskiy, V.A., Ying, Z.C., Armstrong, R.L., Shalaev, V.M.: Percolation and fractal composites: optical studies. J. Nonlinear Opt. Phys. Mater. 9, 105–116 (2000)

    ADS  Google Scholar 

  56. Ping Sheng: Theory for the dielectric function of granular composite media. Phys. Rev. Lett. 45, 60–63 (1980)

    Article  Google Scholar 

  57. Andraud, C., Lafait, J., Beghdadi, A.: Entropic model for the optical properties of heterogeneous media: Validation on granular gold films near percolation. Phys. Rev. B 57, 13227–13234 (1998)

    Article  ADS  CAS  Google Scholar 

  58. Bergman, D.: The dielectric constant of a composite material – A problem in classical physics. Phys. Rep. C 43, 377–407 (1978); Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 44, 1285–1287 (1980)

    Google Scholar 

  59. Markel, V.A., Shalaev, V.M., Stechel, E.B., Kim, W., Armstrong, R.L.: Small-particle composites. I. Linear optical properties. Phys. Rev. B 53, 2425–2436 (1996)

    Article  ADS  CAS  Google Scholar 

  60. Pustovit, V.N., Niklasson, G.A.: Observability of resonance optical structure in fractal metallic clusters. J. Appl. Phys. 90, 1275–1279 (2001)

    Article  ADS  CAS  Google Scholar 

  61. Panoiu, N.-C., Osgood, Jr., R.M.: Subwavelength nonlinear plasmonic nanowire. Nano Lett. 4, 2427–2430 (2004)

    Article  CAS  Google Scholar 

  62. Granqvist, C.G., Hunderi, O.: (1978) Conductivity of inhomogeneous materials: Effective-medium theory with dipole-dipole interaction. Phys. Rev. B 18, 1554–1561 (1978); Optical properties of Ag-SiO2 cermet films: A comparison of effective-medium theories. Phys. Rev. B 18, 2897–2906

    Google Scholar 

  63. Quinten, M., Kreibig, U.: Optical properties of aggregates of small metal particles. Surf. Sci. 172, 557–577 (1986)

    Article  CAS  Google Scholar 

  64. Gérardy, J.M., Ausloos, M.: (1982) Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit. Phys. Rev. B 22, 4950–4959 (1980); II. Optical properties of aggregated metal spheres. ibid. 25, 4204–4229

    Google Scholar 

  65. Auger, J.C., Stout, B., Lafait, J.: Dependent light scattering in dense heterogeneous media. Physica B 279, 21–24 (2000)

    Article  ADS  CAS  Google Scholar 

  66. Stout, B., Auger, J.-C., Lafait, J.: Individual and aggregate scattering matrices and crosssections: conservation laws and reciprocity. J. Mod. Opt. 48, 2105–2128 (2001)

    Article  MATH  ADS  Google Scholar 

  67. Prot, D., Stout, D.B., Lafait, J., Pinçon, N., Palpant, B., Debrus, S.: Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials. J. Opt. A: Pure and Appl. Opt. 4, S99–S102 (2002)

    Article  ADS  Google Scholar 

  68. Butcher, P.N., Cotter, D.: The Elements of Nonlinear Optics. University Press, Cambridge (1991)

    Google Scholar 

  69. Boyd, R.W.: Nonlinear Optics. Academic, San Diego (1992)

    Google Scholar 

  70. Lambrecht, B., Leitner, A., Aussenegg, F.R.: (1999) Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles. Appl. Phys. B 64, 269–272 (1997); SHG studies of plasmon dephasing in nanoparticles. ibid. 68, 419–423

    Google Scholar 

  71. Antoine, R., Brevet, P.F., Girault, H.H., Bethell, D., Schiffrin, D.J.: Surface plasmon enhanced non-linear optical response of gold nanoparticles at the air/toluene interface. Chem. Commun. 1997 (1901–1902)

    Google Scholar 

  72. Antoine, R., Pellarin, M., Palpant, B., Broyer, M., Prével, B., Perez, A., Galetto, P., Brevet, P.F., Girault, H.H.: Surface plasmon enhanced second harmonic response from gold clusters embedded in an alumina matrix. J. Appl. Phys. 84, 4532–4536 (1998)

    Article  ADS  CAS  Google Scholar 

  73. Smith, D.D., Yoon, Y., Boyd, R.W., Campbell, J.K., Baker, L.A., Crooks, R.M., George, M.: z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl, Phys. 86, 6200–6205 (1999)

    Article  ADS  CAS  Google Scholar 

  74. Palpant, B., Prot, D., Mouketou-Missono, A.-S., Rashidi-Huyeh, M., Sella, C., Debrus, S.: Evidence for electron thermal effect in the third-order nonlinear optical response of matrix-embedded gold nanoparticles. Proc. of SPIE 5221, 14–23 (2003)

    Article  ADS  CAS  Google Scholar 

  75. del Coso, R., Solis, J.: Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B 21, 640–644 (2004)

    Article  ADS  CAS  Google Scholar 

  76. Ando, M., Kadono, K., Haruta, M., Sakaguchi, T., Miya, M.: Large third-order optical nonlinearities in transition-metal oxides. Nature 374, 625–627 (1995)

    Article  ADS  CAS  Google Scholar 

  77. Cattaruzza, E., Battaglin, G., Gonella, F., Polloni, R., Mattei, G., Maurizio, C., Mazzoldi, P., Sada, C., Montagna, M., Tosello, C., Ferrari, M.: On the optical absorption and nonlinearity of silica films containing metal nanoparticles. Philos. Mag. B 82, 735–744 (2002)

    Article  ADS  CAS  Google Scholar 

  78. Battaglin, G., Cattaruzza, E., Gonella, F., Polloni, R., Scremin, B.F., Mattei, G., Mazzoldi, P., Sada, C.: Structural and optical properties of Cu:silica nanocomposite films prepared by co-sputtering deposition. Appl. Surf. Sci. 226, 52–56 (2004)

    Article  ADS  CAS  Google Scholar 

  79. Ricard, D., Roussignol, P., Flytzanis, C.: Surface-mediated enhancement of optical phase conjugation in metal colloids. Opt. Lett. 10, 511–513 (1985)

    ADS  CAS  Google Scholar 

  80. Hache, F., Ricard, D., Flytzanis, C.: Optical nonlinearities of small metal particles: Surface-mediated resonance and quantum size effects. J. Opt. Soc. Am. B 3, 1647–1655 (1986)

    ADS  CAS  Google Scholar 

  81. Stroud, D., Hui, P.M.: Nonlinear susceptibilities of granular matter. Phys. Rev. B 37, 8719–8724 (1988)

    Article  ADS  Google Scholar 

  82. Stroud, D., Van E. Wood: Decoupling approximation for the nonlinear-optical response of composite media. J. Opt. Soc. Am. B 6, 778–786 (1989)

    ADS  CAS  Google Scholar 

  83. Ma, H., Xiao, R., Sheng, P.: Third-order optical nonlinearity enhancement through composite microstructures. J. Opt. Soc. Am. B 15, 1022–1029 (1998)

    ADS  CAS  Google Scholar 

  84. Hellwarth, R.W.: Third-order optical susceptibilities of liquids and solids. Prog. Quantum Electron. 5, 1–68 (1979)

    Article  Google Scholar 

  85. Buchalter, B., Meredith, G.R.: Third-order optical susceptibility of glasses determined by third harmonic generation. Appl. Opt. 21, 3221–3224 (1982)

    ADS  CAS  Google Scholar 

  86. Santran, S., Canioni, L., Sarger, L., Cardinal, T., Fargin, E.: Precise and absolute measurements of the complex third-order optical susceptibility. J. Opt. Soc. Am. B 21, 2180-2190 (2004)

    Article  ADS  CAS  Google Scholar 

  87. Hache, F., Ricard, D., Girard, C.: Optical nonlinear response of small metal particles: A self-consistent calculation. Phys. Rev. B 38, 7990–7996 (1988)

    Article  ADS  Google Scholar 

  88. Sipe, J.E., Boyd, R.W.: Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. Phys. Rev. A 43, 1614–1629 (1992)

    Article  ADS  Google Scholar 

  89. Hache, F., Ricard, D., Flytzanis, C., Kreibig, U.: The optical Kerr effect in small metal particles and metal colloids: the case of gold. Appl. Phys. A 47, 347–357 (1988)

    Article  ADS  Google Scholar 

  90. Flytzanis, C., Hache, F., Klein, M.C., Ricard, D., Roussignol, Ph.: Nonlinear optics in composite materials. In: Wolf, E. (ed.) Progress in Optics XXIX, Elsevier Science Publishers B.V., pp. 321–411 (1991)

    Google Scholar 

  91. Rautian, S.G.: Nonlinear spectroscopy of the degenerate electron gas in spherical metallic particles. JETP 85, 451–461 (1997)

    Article  ADS  Google Scholar 

  92. Eesley, G.L.: Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 2144–2151 (1986)

    Article  ADS  CAS  Google Scholar 

  93. Schoenlein, R.W., Lin, W.Z., Fujimoto, J.G., Eesley, G.L.: Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58, 1680–1683 (1987)

    Article  PubMed  ADS  CAS  Google Scholar 

  94. Smith, D.D., Fischer, G., Boyd, R., Gregory, D.A.: Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects. J. Opt. Soc. Am. B 14, 1625–1631 (1997)

    ADS  CAS  Google Scholar 

  95. Peiponen, K.-E., Vartiainen, E.M., Asakura, T.: Dispersion theory of effective meromorphic nonlinear susceptibilities of nanocomposites. J. Phys.: Condens. Matter 10, 2483–2488 (1998)

    Article  ADS  CAS  Google Scholar 

  96. Agarwal, G.S., Dutta Gupta, S.: T-matrix approach to the nonlinear susceptibilities of heterogeneous media. Phys. Rev. A 38, 5678–5687 (1988)

    Article  PubMed  ADS  Google Scholar 

  97. Zeng, X.C., Bergman, D.J., Hui, P.M., Stroud, D.: Effective-medium theory for weakly nonlinear composites. Phys. Rev. B 38, 10970–10973 (1988)

    Article  ADS  Google Scholar 

  98. Blumenfeld, R., Bergman, D.J.: Exact calculation to second order of the effective dielectric constant of a strongly nonlinear inhomogeneous composite. Phys. Rev. B 40, 1987–1989 (1989)

    Article  ADS  Google Scholar 

  99. Haus, J.W., Inguva, R., Bowden, C.M.: Effective-medium theory of nonlinear ellipsoidal composites. Phys. Rev. A 40, 5729–5734 (1989)

    Article  PubMed  ADS  Google Scholar 

  100. Haus, J.W., Kalyaniwalla, N., Inguva, R., Bloemer, M., Bowden, C.M.: Nonlinear-optical properties of conductive spheroidal particle composites. J. Opt. Soc. Am. B 6, 797–807 (1989)

    ADS  CAS  Google Scholar 

  101. Shalaev, V.M., Stockman, M.I.: Resonant excitation and nonlinear optics of fractals. Physica A 185, 181–186 (1992)

    Article  ADS  Google Scholar 

  102. Levy, O., Bergman, D.J.: Clausius-Mossotti approximation for a family of nonlinear composites. Phys. Rev. B 46, 7189–7192 (1992)

    Article  ADS  Google Scholar 

  103. Boyd, R.W., Gehr, R.J., Fischer, G.L., Sipe, J.E.: Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. 5, 505–512 (1996)

    Article  ADS  CAS  Google Scholar 

  104. Shalaev, V.M., Poliakov, E.Y., Markel, V.A.: Small-particle composites. II. Nonlinear optical properties. Phys. Rev. B 53, 2437–2449 (1996)

    Article  ADS  CAS  Google Scholar 

  105. Shalaev, V.M., Sarychev, A.K.: Nonlinear optics of random metal-dielectric films. Phys. Rev. B 57, 13265–13288 (1998)

    Article  ADS  CAS  Google Scholar 

  106. Sarychev, A.K., Shalaev, V.M.: Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys. Rep. 375, 275–371 (2000)

    Article  ADS  Google Scholar 

  107. Gao, L., Li, Z.-Y.: (2000) Temperature dependence of nonlinear optical response in metal/dielectrics composite media. Sol. State Commun. 107, 751–755 (1998); Temperature dependence of nonlinear optical properties in metal/dielectric composites. Phys. Stat. Sol. (b) 218, 571–582

    Google Scholar 

  108. Stockman, M.I., Kurlayev, K.B., George, T.F.: Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory. Phys. Rev. B 60, 17071–17083 (1999)

    Article  ADS  CAS  Google Scholar 

  109. Wu, Y.M., Gao, L., Li, Z.-Y.: The influence of particle shape on nonlinear optical properties of metal-dielectric composites. Phys. Stat. Sol. (b) 220, 997–1008 (2000)

    Article  ADS  CAS  Google Scholar 

  110. Gao, L., Yu, K.W., Li, Z.Y., Bambi Hu, Effective nonlinear optical properties of metal-dielectric composite media with shape distribution. Phys. Rev. E 64, 036615-1–8 (2001)

    Article  ADS  CAS  Google Scholar 

  111. Mackay, T.G., Lakhtakia A., Weiglhofer, W.S.: Homogeneisation of isotropic, cubically nonlinear, composite mediums by the strong-permittivity-fluctuation theory: third-order considerations. Opt. Commun. 204, 219–228 (2002)

    Article  ADS  CAS  Google Scholar 

  112. Ma, H., Sheng, P., Wong, G.K.L.: Third-order nonlinear properties of Au clusters containing dielectric thin films. Topics Appl. Phys. 82, 41–62 (2002)

    ADS  CAS  Google Scholar 

  113. Gao, L., Li, Z.-Y.: Effect of temperature on nonlinear optical properties of composite media with shape distribution. J. Appl. Phys. 91, 2045–2050 (2002)

    Article  ADS  CAS  Google Scholar 

  114. Neeves, A.E., Birnboim, M.H.: (1989) Composite structures for the enhancement of nonlinear optical materials. Opt. Lett. 13, 1087–1089 (1988); Composite structures for the enhancement of nonlinear-optical susceptibility. J. Opt. Soc. Am. B 6, 787–796

    Google Scholar 

  115. Goncharenko, A.V., Popelnukh, V.V., Venger, E.F.: Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites. J. Phys. D: Appl. Phys. 35, 1833–1838 (2002)

    Article  ADS  CAS  Google Scholar 

  116. Pinchuk, A.: Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles. J. Phys. D: Appl. Phys. 36, 460–464 (2003)

    Article  ADS  CAS  Google Scholar 

  117. Ducourtieux, S., Podolskiy, V.A., Grésillon, S., Buil, S., Berini, B., Gadenne, P., Boccara, A.C., Rivoal, J.C., Bragg, W.D., Banerjee, K., Safonov, V.P., Drachev, V.P., Ying, Z.C., Sarychev, A.K., Vladimir M. Shalaev, Near-field optical studies of semicontinuous metal films. Phys. Rev. B 64, 165403 (2001)

    Article  ADS  CAS  Google Scholar 

  118. Sheik-Bahae, M., Said, A.A., Wei, T.-H., Hagan, D.J., Van Stryland, E.W.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769 (1990)

    Article  CAS  Google Scholar 

  119. Lippitz, M., van Dijk, M.A., Orrit, M.: Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005)

    Article  PubMed  CAS  Google Scholar 

  120. Ganeev, R.A., Ryasnyansky, A.I., Kamalov, Sh.R., Kodirov, M.K., Usmanov, T.: Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J. Phys. D: Appl. Phys. 34, 1602–1611 (2001)

    Article  ADS  CAS  Google Scholar 

  121. Lamprecht, B., Krenn, J.R., Leitner, A., Aussenegg, F.R.: Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett. 83, 4421–4424 (1999)

    Article  ADS  CAS  Google Scholar 

  122. Aktsipetrov, O.A., Murzina, T.V., Kim, E.M., Kapra, R.V., Fedyanin, A.A., Inoue, M., Kravets, A.F., Kuznetsova, S.V., Ivanchenko, M.V., Lifshits, V.G.: Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles. J. Opt. Soc. Am. B 22, 138–147 (2005)

    Article  ADS  CAS  Google Scholar 

  123. Philip, R., Kumar, G.R., Sandhyarani N., Pradeep, T.: Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters. Phys. Rev. B 62, 13160–13166 (2000)

    Article  ADS  CAS  Google Scholar 

  124. Qu, S., Zhao, C., Jiang, X., Fang, G., Gao, Y., Zeng, H., Song, Y., Qiu, J., Zhu, C., Hirao, K.: Optical nonlinearities of space selectively precipitated Au nanoparticles inside glasses. Chem. Phys. Lett. 368, 352–358 (2003)

    Article  CAS  Google Scholar 

  125. Puech, K., Henari, F., Blau, W., Duff, D., Schmid, G.: Intensity-dependent optical absorption of colloidal solutions of gold nanoparticles. Europhys. Lett. 32, 119–124 (1995)

    CAS  Google Scholar 

  126. Huang, H.H., Yan, F.Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Oh, P.S., Tang, S.H.: Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13, 172–175 (1997)

    Article  CAS  Google Scholar 

  127. Danilova, Y.E., Lepeshkin, N.N., Rautian, S.G., Safonov, V.P.: Excitation localization and nonlinear optical processes in colloidal silver aggregates. Physica A 241, 231–235 (1997)

    Article  ADS  CAS  Google Scholar 

  128. Debrus, S., Lafait, J., May, M., Pinçon, N., Prot, D., Sella, C., Venturini, J.: Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites. J. Appl. Phys. 88, 4469–4475 (2000)

    Article  ADS  CAS  Google Scholar 

  129. Wang, W.-T., Yang, G., Chen, Z.-H., Zhou, Y.-L., Lü, H.-B., Yang, G.-Z.: Large third-order optical nonlinearity in Au nanometer particle doped BaTiO3 composite films near the resonant frequency. Chinese Phys. 11 1324–1327 (2002)

    Article  ADS  CAS  Google Scholar 

  130. Wang, W., Yang, G., Chen, Z., Lu, H., Zhou, Y., Yang, G., Kong, X.: Nonlinear refraction and saturable absorption in Au:BaTiO3 composite films. Appl. Opt. 42, 5591–5595 (2003)

    PubMed  ADS  CAS  Google Scholar 

  131. Wang, P., Lu, Y., Tang, L., Zhang, J., Ming, H., Xie, J., Ho, F.-H., Chang, H.-H., Lin, H.-Y., Tsai, D.-P.: Surface-enhanced optical nonlinearity of a gold film. Opt. Commun. 229, 425–429 (2004)

    Article  ADS  CAS  Google Scholar 

  132. Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T.: Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm. Opt. Quant. Electron. 36, 949–960 (2004)

    Article  CAS  Google Scholar 

  133. Puech, K., Henari, F., Blau, W., Duff, D., Schmid, G.: Investigation of the ultrafast dephasing time of gold nanoparticles using incoherent light. Chem. Phys. Lett. 247, 13–17 (1995)

    Article  ADS  CAS  Google Scholar 

  134. Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T.: Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ = 1064 nm. Phys. Stat. Sol. (b) 241, 935–944 (2004)

    Article  ADS  CAS  Google Scholar 

  135. Kyoung, M., Lee, M.: Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique. Opt. Commun. 171, 145–148 (1999)

    Article  ADS  CAS  Google Scholar 

  136. Haglund, Jr., R.F., Yang, L., Magruder III, R.H., Wittig, J.E., Becker, K., Zuhr, R.A., Picosecond nonlinear optical response of a Cu:silica nanocluster composite. Opt. Lett. 18, 373–375 (1993)

    ADS  CAS  Google Scholar 

  137. Magruder, III, R.H., Osborne, Jr., D.H., Zuhr, R.A.: Non-linear optical properties of nanometer dimension Ag—Cu particles in silica formed by sequential ion implantation. J. Non-Cryst. Solids 176, 299–303 (1994)

    Article  CAS  Google Scholar 

  138. Yang, G., Wang, W., Zhou, Y., Lu, H., Yang, G., Chen, Z.: Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films. Appl. Phys. Lett. 81, 3969–3971 (2002)

    Article  ADS  CAS  Google Scholar 

  139. Scalisi, A.A., Compagnini, G., D’Urso, L., Puglisi, O.: Nonlinear optical activity in Ag–SiO2 nanocomposite thin films with different silver concentration. Appl. Surf. Sci. 226, 237–241 (2004)

    Article  ADS  CAS  Google Scholar 

  140. Unnikrishnan, K.P., Nampoori, V.P.N., Ramakrishnan, V., Umadevi, M., Vallabhan, C.P.G.: Nonlinear optical absorption in silver nanosol. J. Phys. D: Appl. Phys. 36, 1242–1245 (2003)

    Article  ADS  CAS  Google Scholar 

  141. Qu, S., Gao, Y., Jiang, X., Zeng, H., Song, Y., Qiu, J., Zhu, C., Hirao, K.: Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser. Opt. Commun. 224, 321–327 (2003)

    Article  ADS  CAS  Google Scholar 

  142. Ispasoiu, R.G., Balogh, L., Varnavski, O.P., Tomalia, D.A., Goodson, III, T.: Large optical limiting from novel metal-dendrimer nanocomposite materials. J. Am. Chem. Soc. 122, 11005–11006 (2000)

    Article  CAS  Google Scholar 

  143. François, L., Mostafavi, M., Belloni, J., Delouis, J.F., Delaire, J., Feneyrou, P.: Optical limitation induced by gold clusters. 1. Size effect. J. Phys. Chem. B 104, 6133–6137 (2000)

    Article  CAS  Google Scholar 

  144. François, L., Mostafavi, M., Belloni, J., Delaire, J.A.: Optical limitation induced by gold clusters: Mechanism and efficiency. Phys. Chem. Chem. Phys. 3, 4965–4971 (2001)

    Article  CAS  Google Scholar 

  145. Zhang, H., Zelmon, D.E., Deng, L., Liu, H.-K., Teo, B.K.: Optical limiting behavior of nanosized polyicosahedral gold-silver clusters based on third-order nonlinear optical effects. J. Am. Chem. Soc. 123, 11300–11301 (2001)

    Article  PubMed  CAS  Google Scholar 

  146. Sun, N., Wang, Y., Song, Y., Guo, Z., Dai, L., Zhu, D.: Novel [60]fullerene-silver nanocomposite with large optical limiting effect. Chem. Phys. Lett. 344, 277–282 (2001)

    Article  CAS  Google Scholar 

  147. Qu, S., Du, C., Song, Y., Wang, Y., Gao, Y., Liu, S., Li, Y., Zhu, D.: Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands. Chem. Phys. Lett. 356, 403–408 (2002)

    Article  CAS  Google Scholar 

  148. Fang, H., Du, C., Qu, S., Li, Y., Song, Y., Li, H., Liu, H., Zhu, D.: Self-assembly of the [60]fullerene-substituted oligopyridines on Au nanoparticles and the optical nonlinearities of the nanoparticles. Chem. Phys. Lett. 364, 290–296 (2002)

    Article  CAS  Google Scholar 

  149. Qu, S., Li, H., Peng, T., Gao, Y., Qiu, J., Zhu, C.: Optical nonlinearities from transverse plasmon resonance in gold nano-rods. Mat. Lett. 58, 1427–1430 (2004)

    Article  CAS  Google Scholar 

  150. Zhan, C., Li, D., Zhang, D., Xu, W., Nie, Y., Zhu, D.: The excited-state absorption and third-order optical nonlinearity from 1-dodecanethiol protected gold nanoparticles: Application for optical limiting. Opt. Mat. 26, 11–15 (2004)

    Article  CAS  Google Scholar 

  151. Bloemer, M.J., Haus, J.W., Ashley, P.R.: Degenerate four-wave mixing in colloidal gold as a function of particle size. J. Opt. Soc. Am. B 7, 790–795 (1990)

    ADS  CAS  Google Scholar 

  152. Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Fujii, K., Hayakawa, J., Satou, M.: Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties. J. Appl. Phys. 75, 3075–3080 (1994)

    Article  ADS  CAS  Google Scholar 

  153. Yang, L., Becker, K., Smith, F.M., Magruder III, R.H., Haglund, Jr., R.F., Yang, L., Dorsinville, R., Alfano, R.R., Zuhr, R.A.: Size dependence of the third-order susceptibility of copper nanoclusters investigated by four-wave mixing. J. Opt. Soc. Am. B 11, 457–461 (1994)

    Article  ADS  CAS  Google Scholar 

  154. Uchida, K., Kaneko, S., Omi, S., Hata, C., Tanji, H., Asahara, Y., Ikushima, A.J., Tokizaki, T., Nakamura, A.: Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. J. Opt. Soc. Am. B 11, 1236–1243 (1994)

    ADS  CAS  Google Scholar 

  155. Puech, K., Blau, W., Grund, A., Bubeck, C., Gardenas, G.: Picosecond degenerate four-wave mixing in colloidal solutions of gold nanoparticles at high repetition rates. Opt. Lett. 20, 1613–1615 (1995)

    ADS  CAS  Google Scholar 

  156. Tanahashi, I., Manabe, Y., Tohda, T., Sasaki, S., Nakamura, A.: Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J. Appl. Phys. 79, 1244–1249 (1996)

    Article  ADS  CAS  Google Scholar 

  157. Lee, M., Kim, T.S., Choi, Y.S.: Third-order optical nonlinearities of sol–gel-processed Au–SiO2 thin films in the surface plasmon absorption region. J. Non-Cryst. Solids 211, 143–149 (1997)

    Article  CAS  Google Scholar 

  158. Hosoya, Y., Suga, T., Yanagawa, T., Kurokawa, Y.: Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J. Appl. Phys. 81, 1475–1480 (1997)

    Article  ADS  CAS  Google Scholar 

  159. Liao, H.B., Xiao, R.F., Fu, J.S., Wang, H., Wong, K.S., Wong, G.K.L.: Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales. Opt. Lett. 23, 388–390 (1998)

    ADS  CAS  Google Scholar 

  160. Ballesteros, J.M., Solis, J., Serna, R., Afonso, C.N.: Nanocrystal size dependence of the third-order nonlinear optical response of Cu:Al2O3 thin films. Appl. Phys. Lett. 74, 2791–2793 (1999)

    Article  ADS  CAS  Google Scholar 

  161. Hamanaka, Y., Nakamura, A., Omi, S., Del Fatti, N., Vallée, F., Flytzanis, C.: Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass. Appl. Phys. Lett. 75, 1712–1714 (1999)

    Article  ADS  CAS  Google Scholar 

  162. Hamanaka, Y., Nakamura, A., Hayashi, N., Omi, S.: Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal–glass composites. J. Opt. Soc. Am. B 20, 1227–1232 (2003)

    ADS  CAS  Google Scholar 

  163. del Coso, R., Requejo-Isidro, J., Solis, J., Gonzalo, J., Afonso, C.N.: Third order nonlinear optical susceptibility of Cu:Al2O3 nanocomposites: From spherical nanoparticles to the percolation threshold. J. Appl. Phys. 95, 2755–2762 (2004)

    Article  ADS  CAS  Google Scholar 

  164. Wang, W., Yang, G., Wu, W., Chen, Z.: Effects of the morphology and nanostructure on the optical nonlinearities of Au:BaTiO3 nanocomposite films. J. Appl. Phys. 94, 6837–6840 (2003)

    Article  ADS  CAS  Google Scholar 

  165. Magruder, III, R.H., Haglund, Jr., R.F., Yang, L., Wittig, J.E., Zuhr, R.A.: Physical and optical properties of Cu nanoclusters fabricated by ion implantation in fused silica. J. Appl. Phys. 76, 708–715 (1994)

    Article  ADS  CAS  Google Scholar 

  166. Serna, R., Ballesteros, J.M., Solis, J., Afonso, C.N., Osborne, D.H., Haglund, Jr., R.F., Petford-Long, A.K.: Laser-induced modification of the nonlinear optical response of laser-deposited Cu:Al2O3 nanocomposite films. Thin Sol. Films 318, 96–99 (1998)

    Article  CAS  Google Scholar 

  167. Ma, G., Sun, W., Tang, S.-H., Zhang, H., Shen, Z., Qian, S.: Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt. Lett. 27, 1043–1045 (2002)

    ADS  CAS  Google Scholar 

  168. Selvan, S.T., Hayakawa, T., Nogami, M., Kobayashi, Y., Liz-Marzán, L.M., Hamanaka, Y., Nakamura, A.: Sol-gel derived gold nanoclusters in silica glass possessing large optical nonlinearities. J. Phys. Chem. B 106, 10157–10162 (2002)

    Article  CAS  Google Scholar 

  169. Liao, H.B., Wen, W., Wong, G.K.L.: Preparation and optical characterization of Au/SiO2 composite films with multilayer structure. J. Appl. Phys. 93, 4485–4488 (2003)

    Article  ADS  CAS  Google Scholar 

  170. Liao, H., Wen, W., Wong, G.K.L., Yang, G.: Optical nonlinearity of nanocrystalline Au/ZnO composite films. Opt. Lett. 28, 1790–1792 (2003)

    PubMed  ADS  CAS  Google Scholar 

  171. Yang, Y., Nogami, M., Shi, J., Chen, H., Ma, G., Tang, S.: Enhancement of third-order optical nonlinearities in 3-dimensional films of dielectric shell capped Au composite nanoparticles. J. Phys. Chem. B 109, 4865–4871 (2005)

    Article  PubMed  CAS  Google Scholar 

  172. Takeda, Y., Lu, J., Plaksin, O.A., Kono, K., Amekura, H., Kishimoto, N.: Control of optical nonlinearity of metal nanoparticle composites fabricated by negative ion implantation. Thin Sol. Films 464–465, 483–486 (2004)

    Article  CAS  Google Scholar 

  173. Gao L., Li, Z.-Y.: Third-order nonlinear optical response of metal dielectric composites. J. Appl. Phys. 87, 1620–1625 (2000)

    Article  ADS  CAS  Google Scholar 

  174. Ishizaka, T., Muto, S., Kurokawa, Y.: Nonlinear optical and XPS properties of Au and Ag nanometer-size particle-doped alumina films prepared by the sol–gel method. Opt. Commun. 190, 385–389 (2001)

    Article  ADS  CAS  Google Scholar 

  175. Yang, L., Osborne, D.H., Haglund, Jr., R.F., Magruder, R.H., White, C.W., Zuhr, R.A., Hosono, H.: Probing interface properties of nanocomposites by third-order nonlinear optics. Appl. Phys. A 62, 403–415 (1996)

    Article  ADS  Google Scholar 

  176. Wang, W.T., Chen, Z.H., Yang, G., Guan, D.Y., Yang, G.Z., Zhou, Y.L., Lu, H.B.: Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters. Appl. Phys. Lett. 83, 1983–1985 (2003)

    Article  ADS  CAS  Google Scholar 

  177. Zhang, Q.F., Liu, W.M., Xue, Z.Q., Wu, J.L., Wang, S.F., Wang, D.L., Gong, Q.H.: Ultrafast optical Kerr effect of Ag–BaO composite thin films. Appl. Phys. Lett. 82, 958–960 (2003)

    Article  ADS  CAS  Google Scholar 

  178. Zhou, P., You, G., Li, J., Wang, S., Qian, S., Chen, L.: Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films. Opt. Expr. 13, 1508–1514 (2005)

    Article  ADS  CAS  Google Scholar 

  179. Cotell, C.M., Schiestel, S., Carosella, C.A., Flom, S., Hubler, G.K., Knies, D.L.: Ion-beam assisted deposition of Au nanocluster/Nb2O5 thin films with nonlinear optical properties. Nucl. Instr. and Meth. in Phys. Res. B 127/128, 557–561 (1997)

    Article  ADS  CAS  Google Scholar 

  180. Liao, H.B., Xiao, R.F., Wang, H., Wong, K.S., Wong, G.K.L.: Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale. Appl. Phys. Lett. 72, 1817–1819 (1998)

    Article  ADS  CAS  Google Scholar 

  181. Zhang, C.-F., You, G.-J., Dong, Z.-W., Liu, Y., Ma, G.-H., Qian, S.-X.: Off-resonant third-order optical nonlinearity of an Ag:TiO2 composite film. Chin. Phys. Lett. 22, 475–477 (2005)

    Article  ADS  Google Scholar 

  182. Yang, G., Wang, W.-T., Yang, G.-Z., Chen, Z.-H.: Enhanced nonlinear optical properties of laser deposited Ag/BaTiO3 nanocomposite films. Chin. Phys. Lett. 20, 924–927 (2003)

    Article  ADS  Google Scholar 

  183. Wang, W., Qu, L., Yang, G., Chen, Z.: Large third-order optical nonlinearity in BaTiO3 matrix-embedded metal nanoparticles. Appl. Surf. Sci. 218, 24–28 (2003); Wang, W., Yang, G., Chen, Z., Lu, H., Zhou, Y., Yang, G., Kong, X.: Nonlinear refraction and saturable absorption in Au:BaTiO3 composite films. Appl. Opt. 42, 5591–5595 (2003)

    Google Scholar 

  184. Zhou, P., You, G., Li, J., Wang, S., Qian, S., Chen, L.: Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films. Opt. Expr. 13, 1508–1514 (2005)

    Article  ADS  CAS  Google Scholar 

  185. Williams, E.K., Ila, D., Sarkisov, S., Curley, M., Cochrane, J.C., Poker, D.B., Hensley, D.K., Borel, C.: Study of the effects of MeV Ag and Au implantation on the optical properties of LiNbO3. Nucl. Instr. and Meth. in Phys. Res. B 141, 268–273 (1998); Sarkisov, S.S., Williams, E., Curley, M., Ila, D., Venkateswarlu, P., Poker, D.B., Hensley, D.K.: Third order optical nonlinearity of colloidal metal nanoclusters formed by MeV ion implantation. Nucl. Instr. and Meth. in Phys. Res. B 141, 294–298 (1998)

    Google Scholar 

  186. Ryasnyansky, A., Palpant, B., Debrus, S., Ganeev, R., Stepanov, A., Can, N., Buchal, C., Uysal, S.: Nonlinear optical absorption of ZnO doped with copper nanoparticles in the picosecond and nanosecond pulse laser field. Appl. Opt. 44, 2839–2845 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  187. Huang, H.H., Yan, F.Q., Kek, Y.M., Chew, C.H., Xu, G.Q., Ji, W., Oh, P.S., Tang, S.H.: Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13, 172–175 (1997)

    Article  CAS  Google Scholar 

  188. Pinçon-Roetzinger, N., Prot, D., Palpant, B., Charron, E., Debrus, S.: Large optical Kerr effect in matrix-embedded metal nanoparticles. Mat. Sci. Eng. C 19, 51–54 (2002)

    Article  Google Scholar 

  189. Pinçon, N., Palpant, B., Prot, D., Charron, E., Debrus, S.: Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters. Eur. Phys. J. D 19, 395–402 (2002)

    Article  ADS  Google Scholar 

  190. Liao, H.B., Xiao, R.F., Fu, J.S., Yu, P., Wong, G.K.L., Ping Sheng, Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold. Appl. Phys. Lett. 70, 1–3 (1997)

    Article  ADS  CAS  Google Scholar 

  191. Liao, H.B., Xiao, R.F., Fu, J.S., Wong, G.K.L.: Large third-order nonlinear optical susceptibility of Au–Al2O3 composite films near the resonant frequency. Appl. Phys. B 65, 673–676 (1997)

    Article  CAS  Google Scholar 

  192. Zhou, P., You, G.J., Li, Y.G., Han, T., Li, J., Wang, S.Y., Chen, L.Y., Liu, Y., Qian, S.X.: Linear and ultrafast nonlinear optical response of Ag:Bi2O3 composite films. Appl. Phys. Lett. 83, 3876–3878 (2003)

    Article  ADS  CAS  Google Scholar 

  193. Hamanaka, Y., Fukuta, K., Nakamura, A., Liz-Marzán, L.M., Mulvaney, P.: Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl. Phys. Lett. 84, 4938–4940 (2004)

    Article  ADS  CAS  Google Scholar 

  194. Takeda, Y., Lu, J., Plaksin, O.A., Amekura, H., Kono, K., Kishimoto, N.: Optical properties of dense Cu nanoparticle composites fabricated by negative ion implantation. Nucl. Instr. and Meth. in Phys. Res. B 219–220, 737–741 (2004)

    Article  CAS  Google Scholar 

  195. Liao, H.B., Wen, W., Wong, G.K.L.: Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles. App. Phys. A: Mat. Sci. Proc. 80, 861–864 (2005)

    Article  CAS  Google Scholar 

  196. West, R., Wang, Y., Goodson III, T.: Nonlinear absorption properties in novel gold nanostructured topologies. J. Phys. Chem. B 107, 3419–3426 (2003)

    Article  CAS  Google Scholar 

  197. Okada, N., Hamanaka, Y., Nakamura, A., Pastoriza-Santos, I., Liz-Marzán, L.M.: Linear and nonlinear optical response of silver nanoprisms: Local electric fields of dipole and quadrupole plasmon resonances. J. Phys. Chem. B 108, 8751–8755 (2004)

    Article  CAS  Google Scholar 

  198. Zhao, C.-J., Qu, S.-L., Gao, Y.-C., Song, Y.-L., Qiu, J.-R., Zhu, C.-S.: Preparation and nonlinear optical properties of Au colloid. Chin. Phys. Lett. 20, 1752–1754 (2003)

    Article  ADS  Google Scholar 

  199. Ganeev, R.A., Ryasnyansky, A.I., Stepanov, A.L., Usmanov, T.: Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm. Opt. Quant. Electron. 36, 949–960 (2004)

    Article  CAS  Google Scholar 

  200. Faccio, D., Di Trapani, P., Borsella, E., Gonella, F., Mazzoldi, P., Malvezzi, A.M.: Measurement of the third-order nonlinear susceptibility of Ag nanoparticles in glass in a wide spectral range. Europhys. Lett, 43, 213–218 (1998)

    Article  ADS  CAS  Google Scholar 

  201. Li, Y., Takata, M., Nakamura, A.: Size-dependent enhancement of nonlinear optical susceptibilities due to confined excitons in CuBr nanocrystals. Phys. Rev. B 57, 9193–9200 (1998)

    Article  ADS  CAS  Google Scholar 

  202. Bigot, J.-Y., Merle, J.-C., Cregut, O., Daunois, A.: Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys. Rev. Lett. 75, 4702–4705 (1995)

    Article  PubMed  ADS  CAS  Google Scholar 

  203. Hamanaka, Y., Hayashi, N., Omi, S., Nakamura, A.: Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass. J. Lumin. 76&77, 221–225 (1997)

    Google Scholar 

  204. Nisoli, M., Stagira, S., De Silvestri, S., Stella, A., Tognini, P., Cheyssac, P., Kofman, R.: Ultrafast electronic dynamics in solid and liquid gallium nanoparticles. Phys. Rev. Lett. 78, 3575–3578 (1997)

    Article  ADS  CAS  Google Scholar 

  205. Perner, M., Bost, P., Becker, U., Mennig, M., Schmitt, M., Schmidt, H.: (1999) Optically induced damping of the surface plasmon resonance in gold colloids. Phys. Rev. Lett. 78, 2192–2195 (1997); Hartland, G.V., Hodak, J.H., Martini, I.: Comment. ibid. 82, 3188 (1999); Perner, M., von Plessen, G., Feldmann, J.: Reply. ibid. 82, 3189

    Google Scholar 

  206. Inouye, H., Tanaka, K., Tanahashi, I., Hirao, K.: Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticles system. Phys. Rev. B 57, 11334–11340 (1998)

    Article  ADS  CAS  Google Scholar 

  207. Inouye, H., Tanaka, K., Tanahashi, I., Hirao, K.: Femtosecond optical Kerr effect in the gold nanoparticles system. Jpn. J. Appl. Phys. 37, L1520–L1522 (1998)

    Article  Google Scholar 

  208. Bigot, J.-Y., Halté, V., Merle, J.-C., Daunois, A.: Electron dynamics in metallic nanoparticles. Chem. Phys. 251, 181–203 (2000)

    Article  CAS  Google Scholar 

  209. Del Fatti, N., Vallée, F.: Ultrafast optical nonlinear properties of metal nanoparticles. Appl. Phys. B 73, 383–390 (2001)

    Article  ADS  CAS  Google Scholar 

  210. Hamanaka, Y., Kuwabata, J., Tanahashi, I., Omi, S., Nakamuka, A.: Ultrafast electron relaxation via breathing vibration of gold nanocrystals embedded in a dielectric medium. Phys. Rev. B 63, 104302 (2001)

    Article  ADS  CAS  Google Scholar 

  211. Voisin, C., Del Fatti, N., Christofilos, D., Vallée, F.: Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 105, 2264–2280 (2001)

    Article  CAS  Google Scholar 

  212. Falconieri, M.: Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999)

    Article  ADS  CAS  Google Scholar 

  213. Rashidi-Huyeh, M., Palpant, B.: Thermal response of nanocomposite materials under pulsed laser excitation. J. Appl. Phys. 96, 4475–4482 (2004)

    Article  ADS  CAS  Google Scholar 

  214. Halté, V., Bigot, J.-Y., Palpant, B., Broyer, M., Prével, B., Pérez, A.: Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices. Appl. Phys. Lett. 75, 3799–3801 (1999)

    Article  ADS  Google Scholar 

  215. Hu, M., Hartland, G.V.: Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. J. Phys. Chem. B 106, 7029–7033 (2002)

    Article  CAS  Google Scholar 

  216. Heilweil, E.J., Hochstrasser, R.M.: Nonlinear spectroscopy and picosecond transient grating study of colloidal gold. J. Chem. Phys. 82, 4762–4770 (1985)

    Article  ADS  CAS  Google Scholar 

  217. Inouye, H., Tanaka, K., Tanahashi, I., Hattori, T., Nakatsuka, H.: Ultrafast optical switching in a silver nanoparticle system. Jpn. J. Appl. Phys. 39, 5132–5133 (2000)

    Article  CAS  Google Scholar 

  218. Mehendale, S.C., Mishra, S.R., Bindra, K.S., Laghate, M., Dhami, T.S., Rustagi, K.C.: Nonlinear refraction in aqueous colloidal gold. Opt. Commun. 133, 273–276 (1997)

    Article  ADS  CAS  Google Scholar 

  219. de Nalda, R., del Coso, R., Requejo-Isidro, J., Olivares, J., Suarez-Garcia, A., Solis, J., Afonso, C.N.: Limits to the determination of the nonlinear refractive index by the z-scan method. J. Opt. Soc. Am. B 19, 289–296 (2002)

    ADS  Google Scholar 

  220. Ballesteros, J.M., Serna, R., Solís, J., Afonso, C.N., Petford-Long, A.K., Osborne, D.H., Haglund, Jr., R.F.: Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility. Appl. Phys. Lett. 71, 2445–2447 (1997)

    Article  ADS  CAS  Google Scholar 

  221. Corti, C.W., Holliday, R.J., Thompson, D.T.: Developing new industrials applications for gold: gold nanotechnology. Gold Bulletin. 35, 111–117 (2002)

    CAS  Google Scholar 

  222. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100, 13549–13554 (2003); Loo, C., Lin, A., Hirsch, L., Lee, M.H., Barton, J., Halas, N., West, J., Drezek, R.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004)

    Google Scholar 

  223. Inouye, H., Kanemitsu, Y.: Direct observation of nonlinear effects in a one-dimensional photonic crystal. Appl. Phys. Lett. 82, 1155–1157 (2003); Inouye, H., Kanemitsu, Y., Hirao, K.: Nonlinear optical response in a total-reflection-type one-dimensional photonic crystal with gold nanoparticles. Physica E 17, 414–417 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Palpant, B. (2006). Third-Order Nonlinear Optical Response of Metal Nanoparticles. In: Papadopoulos, M.G., Sadlej, A.J., Leszczynski, J. (eds) Non-Linear Optical Properties of Matter. Challenges and Advances in Computational Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4850-5_15

Download citation

Publish with us

Policies and ethics