Skip to main content

Atomistic Molecular Modeling of Electric Field Poling of Nonlinear Optical Polymers

  • Chapter
Non-Linear Optical Properties of Matter

Abstract

The orientation of the nonlinear optical chromophore in a guest-host polymer system under the application of an external electric field plays an important role in the electro-optic activity in the material. The process of electric field poling of nonlinear optical chromophores in polymer systems has been studied through both Monte Carlo simulations and atomistic molecular modeling simulations. We review the progress of simulations in this area as well as describe our efforts and progress in understanding the process of electric field poling at an atomistic level of theory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, W.-K., Hayden, L.M.: Fully atomistic modeling of an electric field poled guest-host nonlinear optical polymer, J. Chem. Phys. 111, 5212–5222 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Robinson, B.H., Dalton, L.R.: Monte carlo statistical mechanical simulations of the competition of intermolecular electrostatic and poling-field interactions in defining macroscopic electro-optic activity for organic chromophore/polymer materials, J. Phys. Chem. A 10420, 4785–4795 (2000)

    Article  CAS  Google Scholar 

  3. Makowska-Janusik, M., Reis, H., Papadopoulos, M.G., Economou, I.G., Zacharopoulos, N.: Molecular dynamics simulations of electric field poled nonlinear optical chromophores incorporated in a polymer matrix, J. Phys. Chem. B 1082, 588–596 (2004)

    Article  CAS  Google Scholar 

  4. Nielsen, R.D., Rommel, H.L., Robinson, B.H.: Simulation of the loading parameter in organic nonlinear optical materials, J. Phys. Chem. B 10825, 8659–8667 (2004)

    Article  CAS  Google Scholar 

  5. Theodorou, D.N., Suter, U.W.: Detailed molecular structure of a vinyl polymer glass, Macromolecules 18, 1467 (1985)

    Article  CAS  Google Scholar 

  6. Theodorou, D.N., Suter, U.W.: Local structure and the mechanism of response to elastic deformation in a glassy polymer, Macromolecules 19, 379–387 (1986)

    Article  CAS  Google Scholar 

  7. Theodorou, D.N., Suter, U.W.: Atomistic modeling of mechanical properties of polymeric glasses, Macromolecules 19, 139–154 (1986)

    Article  CAS  Google Scholar 

  8. Hutnik, M., Argon, A.S., Suter, U.W.: Quasi-static modeling of chain dynamics in the amorphous glassy polycarbonate of 4,4,′-isopropyulidenediphenol, Macromolecules 2422, 5970 (1991)

    Article  CAS  Google Scholar 

  9. Hutnik, M., Argon, A.S., Suter, U.W.:(1991) Conformational characteristics of the polycarbonate of 4,4′-isopropylidenediphenol, Macromolecules 24, 5956–596

    Article  CAS  Google Scholar 

  10. Hutnik, M., Gentile, F.T., Ludovice, P.J., Suter, U.W., Argon, A.S.: An atomistic model of the amorphous glassy polycarbonate of 4,4′-isopropylidenediphenol, Macromolecules 24, 5962–5969 (1991)

    Article  CAS  Google Scholar 

  11. Kim, E.G., Misra, S., Mattice, W.L.: Atomistic models of amorphous polybutadienes. 2. Poly(1.4-trans-butadiene), poly(1,2-butadiene), and a random copolymer of 1,4-trans-butadiene, 1,4-cis-butadiene, and 1,2-butadiene, Macromolecules 26, 3424–3431 (1993)

    Article  CAS  Google Scholar 

  12. Li, Y., Mattice, W.L.: Atom-based modeling of amorphous 1,4-cis-polybutadiene, Macromolecules 25, 4942–4947 (1992)

    Article  CAS  Google Scholar 

  13. Rigby, D., Roe, R.J.: Molecular dynamics simulation of polymer liquid and glass. 4. Free volume distribution, Macromolecules 2326, 5312–5319 (1990)

    Article  CAS  Google Scholar 

  14. Rigby, D., Roe, R.-J.: Molecular dynamics simulation of polymer liquid and glass. I. Glass transition, J. Chem. Phys. 8712, 7285–7292 (1987)

    Article  ADS  CAS  Google Scholar 

  15. Rigby, D., Roe, R.J.: Molecular dynamics simulation of polymer liquid and glasss. Ii. Short range order and orientation correlation, J. Chem. Phys. 898, 5280–5290 (1988)

    Article  ADS  CAS  Google Scholar 

  16. Rigby, D., Roe, R.J.: Molecular dynamics simulation of polymer liquid and glass. 3. Chain conformation, Macromolecules 22, 2259–2264 (1989)

    Article  CAS  Google Scholar 

  17. Greenfield, M.L., Theodorou, D.N.: Geometric analysis of diffusion pathways in glassy and melt atactic polypropylene, Macromolecules 26, 5461–5472 (1993)

    Article  CAS  Google Scholar 

  18. Misra, S., Mattice, W.L.: Atomistic models of amorphous polybutadienes. 3. Static free volume, Macromolecules 26, 7274 (1993)

    Article  CAS  Google Scholar 

  19. Fan, C.F., Cagin, T., Shi, W., Smith, K.A.: Local chain dynamics of a model polycarbonate near glass transition temperature: A molecular dynamics simulation, Macromol. Th. Sim. 6, 83–102 (1997)

    Article  CAS  Google Scholar 

  20. Takeuchi, H., Roe, R.-J.: Molecular dynamics simulation of local chain motion in bulk amorphous polymers. I. Cynamics above the glass transition, J. Chem. Phys. 94, 7446 (1991)

    Article  ADS  CAS  Google Scholar 

  21. Adolf, D.B., Ediger, M.D.: Brownian dynamics simulations of local motions in polyisoprene, Macromolecules 24, 5834 (1991)

    Article  CAS  Google Scholar 

  22. Kim, E.-G., Mattice, W.L.: Local chain dynamics of bulk amorphous polybutadienes: A molecular dynamics study, J. Chem. Phys. 101, 6242–6250 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Moe, N.E., Ediger, M.D.: Computer simulations of polyisoprene local dynamics in vacuum, solution, and the melt: Are conformational transitions always important? Macromolecules 2916, 5484–5492 (1996)

    Article  CAS  Google Scholar 

  24. Muller-Plathe, F., Rogers, S.C., Gunstern, W.F.v.: Diffusion coefficients of penetrant gases in polyisobutylene can be calculated correctly by molecular dynamics simulations, Macromolecules 25, 6722–6724 (1992)

    Article  Google Scholar 

  25. Pant, P.V.K., Boyd, R.H.: Molecular dynamics simulation of diffusion of small penetrants in polymers, Macromolecules 26, 679–686 (1993)

    Article  CAS  Google Scholar 

  26. Gusev, A.A., Suter, U.W., Moll, D.J.: Relationship between jelium transport and molecular motions in a glassy polcarbonate, Macromolecules 28, 2582–2584 (1995)

    Article  CAS  Google Scholar 

  27. Soldera, A.: Energetic analysis of the two pmma chain tacticities and pma through molecular dynamics simulations, Polymer 43, 4269–4275 (2002)

    Article  CAS  Google Scholar 

  28. Soldera, A.: Comparison between the glass transition temperatures of the two pmma tacticities: A molecular dynamics simulation point of view, Macromol. Symp. 133, 21–23 (1998)

    CAS  Google Scholar 

  29. Paul, W.: Molecular dynamics simulations of the glass transition in polymer melts, Polymer 45,3901–3905 (2004)

    Article  CAS  Google Scholar 

  30. Dalton, L.R., Harper, A.W., Robinson, B.H.: The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolarizability chromophores in electrically poled polymeric thin films, Proc. Nat. Acad. Sci. USA 94, 4842–4847 (1997)

    Article  PubMed  ADS  CAS  Google Scholar 

  31. Piekara, A.: A theory of electric polarization, electro-optical kerr effect and electric saturation in liquids and solutions, Proc. Royal Soc. London. Series A, Math. Phys. Sci. 172950, 360–383 (1939)

    Article  MATH  ADS  CAS  Google Scholar 

  32. London, F.: The general theory of molecular forces, Trans. Farad. Soc. 33, 8–26 (1937)

    Article  CAS  Google Scholar 

  33. Harper, A.W., Sun, S., Dalton, L.R., Garner, S.M., Chen, A., Kalluri, S., Steier, W.H., Robinson, B.H.:(1998) Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: The role of chromophore-chromophore electrostatic interactions, J. Opt. Soc. of Am. B 151, 329–337

    Article  ADS  CAS  Google Scholar 

  34. Robinson, B.H., Dalton, L.R., Harper, A.W., Ren, A., Wang, F., Zhang, C., Todorova, G., Lee, M., Aniszfeld, R., Garner, S., Chen, A., Steier, W.H., Houbrecht, S., Persoons, A., Ledoux, I., Zyss, J., Jen, A.K.Y.: The molecular and supramolecular engineering of polymeric electro-optic materials, Chem. Phys. 245, 35 (1999)

    Article  CAS  Google Scholar 

  35. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  36. Molecular Simulation, Inc, Cerius2, San Diego, CA.

    Google Scholar 

  37. Hagler, A.T., Huler, E., Lifson, S.: Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond for amide crystals, J. Am. Chem. Soc. 9617, 5319–5327 (1974)

    Article  PubMed  CAS  Google Scholar 

  38. Kitson, D.H., Hagler, A.T.: Theoretical studies of the structure and molecular dynamics of a peptide crystal, Biochem. 2714, 5246–5257 (1988)

    Article  CAS  Google Scholar 

  39. Berendsen, H.J.C., Spoel, D.v.d., Drunen, R.v.: Gromacs: A message-passing parallel molecular dynamics implementation, Comp. Phys. Comm. 91(1–3), 43–56 (1995)

    Article  ADS  CAS  Google Scholar 

  40. Lindahl, E., Hess, B., Spoel, D.J.v.d.: Gromacs 3.0: A package for molecular simulation and trajectory analysis, J. Mol. Model. 78, 306–317 (2001)

    CAS  Google Scholar 

  41. Spoel, D.J.v.d., Buuren, A.R.v., Apol, E., Tieleman, P.J., Sijbers, A.L.T.M., Hess, B., Feenstra, K.A., Lindahl, E., Drunen, R.v., Berendsen, H.J.C.: Gromacs-user manual, Department of Biophysical Chemistry, University of Groningen, Groningen, Germany 2002

    Google Scholar 

  42. Stewart, J.J.P.: Mopac, a semi-empirical molecular orbital program, Quantum Chemical Program Exchange No. 455, 1983

    Google Scholar 

  43. Hayden, L.M., Sinyukov, A.M., Leahy, M.R., French, J., Lindahl, P., Herman, W., Twieg, R.J., He, M.: New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime, J. Polym. Sci.:Part B: Polym. Phys. 41, 2492–2500 (2003)

    Article  CAS  Google Scholar 

  44. Harris, K.D., Ayachitula, R., Strutz, S.J., Hayden, L.M., Twieg, R.J.: Dual use chromophores for photorefractive and irreversible photochromic applications, Appl. Opt. 4017, 2895–2901 (2000)

    Article  ADS  Google Scholar 

  45. Sinyukov A.M., Hayden, L.M.: Efficient electro-optic polymers for thz systems, J. Phys. Chem. B 108, 8515–8522 (2004)

    Article  CAS  Google Scholar 

  46. Molecular Simulation, Inc, Amorphous builder, San Diego, CA.

    Google Scholar 

  47. Young, J.A., Farmer, B.L., Hinkley, J.A.: Molecular modeling of the poling of piezoelectric polyimides, Polym. 4010, 2787–2795 (1999)

    Article  CAS  Google Scholar 

  48. Hayden, L.M., Brower, S.C., Strutz, S.J.: Pressure dependence of the depoling temperature in nonlinear optical polymers, Macromolecules 309, 2734–2737 (1997)

    Article  CAS  Google Scholar 

  49. O’Reilly, J.M.: The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate, J. Polym. Sci. 57, 429 (1962)

    Article  CAS  Google Scholar 

  50. Olabisi, O., Simha, R.: Pressure-volume-temperature studies of amorphous and crystallizable polymers. I. Experimental, Macromolecules 82, 206–210 (1975)

    Article  CAS  Google Scholar 

  51. Quach, A., Simha, R.: Pressure-volume-temperature properties and transitions of amorphous polymers; polystyrene and poly (orthomethylstyrene), J. Appl. Phys. 4212, 4592 (1971)

    Article  ADS  CAS  Google Scholar 

  52. Woodcock, L.V.: Isothermal molecular dynamics calculations for liquid salts, Chem. Phys. Lett. 10, 257 (1971)

    Article  ADS  CAS  Google Scholar 

  53. Swope, W.C., Anderson, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, J. Chem. Phys. 76, 637 (1982)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Leahy-Hoppa, M.R., French, J.A., Cunningham, P.D., Hayden, L.M. (2006). Atomistic Molecular Modeling of Electric Field Poling of Nonlinear Optical Polymers. In: Papadopoulos, M.G., Sadlej, A.J., Leszczynski, J. (eds) Non-Linear Optical Properties of Matter. Challenges and Advances in Computational Chemistry and Physics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4850-5_11

Download citation

Publish with us

Policies and ethics