Skip to main content

MODELING OF ELECTROCHEMICAL PROCESSES IN THE ELECTRODES BASED ON SOLID ACTIVE REAGENTS AND CONDUCTIVE CARBON ADDITIVES

  • Conference paper
New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 229))

Abstract

The processes that occur at single crystals of an active substance embedded in an electroconducting porous matrix are considered. Conversion of solid reagents is assumed to proceed via a liquid-phase scheme as follows: dissolution–electrochemical reaction–crystallization. A set of equations is proposed. The set having been solved, an analytical expression is derived for a local polarization characteristic as a function of polarization, oxidation state of reagents, and structural and physicochemical parameters of the system. In order to check the model, galvanostatic characteristics of the electrodes made of the mixture of chloranile (C6Cl4O2) and carbon black have been investigated. The theoretical and experimental characteristics show very good agreements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Bogotzky V.S., Skundin A.M. Chemical Power Sources. London-New York: Academic Press, 1980.

    Google Scholar 

  2. Grygar T., Markenand F., Schroder U. and Scholz F. Collect. Czech. Chem. Commun, 2002; 67: 163–205.

    Article  CAS  Google Scholar 

  3. Matveev V.V. Porous Electrode with Weakly Soluble Nonelectroconducting Reagents: Polarization Characteristic of an Elementary Cell. Russ. J. Electrochem, 1997; 33: 839 46.

    CAS  Google Scholar 

  4. Ksenzhek 0.S. Macrokinetics of Processes on Porous Electrodes. Electrochem. Acta. 1964; 9: 629–37.

    Article  CAS  Google Scholar 

  5. Micka K., Rousar I. Theory of Porous Electrodes. XII. The Negative Plate of the Lead-Acid Battery. Electrochim. Acta. 1974; 19: 499–502.

    Article  CAS  Google Scholar 

  6. Micka K., Rousar I. Theory of Porous Electrodes. XVI. The Nickel Hydroxide Electrode. Electrochim. Acta. 1980; 25: 1085–90.

    Article  CAS  Google Scholar 

  7. Vest X., Jacobsen ?., Atiung S. Modeling of Porous Insertion Electrodes with Liquid Electrolite. J. Electrochem. Soc. 1982; 129: 1480–85.

    Article  Google Scholar 

  8. Dunning J.S., Bennion D.N., Newman J. Analysis of Porous Electrodes with Sparingly Soluble Reactant. J. Electrochem. Soc. 1971; 118: 1251–56.

    CAS  Google Scholar 

  9. Newman J., Teedemann W. Porous-Electrode Theory with Battary Application. A.I. Ch. Journal. 1975; 21: 25–41.

    CAS  Google Scholar 

  10. Srinivasan F., Weidner J. W., and Newman J. Hysteresis during Cycling of the Nickel Hydroxide Electrode. J. Electrochem Soc. 2001; 148: A969–80.

    Article  CAS  Google Scholar 

  11. Zheng G., Popov B.N. and White R. E. Application of Porous Electrode Theory on Metal-Hydride Electrodes in Alkaline Solution. J. Electrochem Soc. 1996; 143: 435–41.

    Article  CAS  Google Scholar 

  12. Subramanian V. R. and White R. E. New Separation of Variables Method for Composite Electrodes with Galvanostatic Boundary Conditions. J. Power Sources. 2001; 96: 385–95.

    Article  CAS  Google Scholar 

  13. Wu B. and White R. E., Modeling of a Nickel-Hydrogen Cell. Phase Reactions in Nickel Active Material. J. Electrochem Soc. 2001; 148: A595–609.

    Article  CAS  Google Scholar 

  14. Matveev V.V. The Influence of the Other Phase Crystals Present on the Crystal Dissolution. (Rus.). Problems of Chemistry and Chemical Technology /Voprosy Khimii i Khimicheskoy Tekhnologii/ (Ukrainian Journal); in press.

    Google Scholar 

  15. Matveev V.V. Calculation of the Electrochemical Characteristics of Porous Electrodes with a Polydisperse Crystal Structure (Rus.), Problems of Chemistry and Chemical Technology /Voprosy Khimii i Khimicheskoy Tekhnologii/ (Ukrainian Journal). 2001; 3: 96–111.

    Google Scholar 

  16. Matveev V.V. Calculation of the Electrochemical Characteristics Porous Electrodes with Polydisperse Crystal Structure. 53rd Meeting ISE, Abstracts, Dusseldorf, Germany 15–20 September. 2002.

    Google Scholar 

  17. Chu S.S.C., Jeffrey G.A., Sakurai T. The Crystall Strycture of Tetracloro- p -Benzoquinono (Chloranil). Acta crystallogr. 1962; 15: 661–71.

    Article  CAS  Google Scholar 

  18. Dinkevich F.E., Juravel T.A., Ksenzhek 0.S. and Lobach G.A. The Solubility of Some Quinon Compounds in the Sulphuric Acid Solvents. (Rus.), Problems of Chemistry and Chemical Technology /Voprosy Khimii i Khimicheskoy Tekhnologii/ (Ukrainian Journal). 1979; 55: 10–12.

    Google Scholar 

  19. Lobach G.A. The Disk Microelectrode: Theory and Application. Ph.D. Thesis. Dniepropetrovsk: DChTI, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Matveyev, V.V. (2006). MODELING OF ELECTROCHEMICAL PROCESSES IN THE ELECTRODES BASED ON SOLID ACTIVE REAGENTS AND CONDUCTIVE CARBON ADDITIVES. In: Barsukov, I.V., Johnson, C.S., Doninger, J.E., Barsukov, V.Z. (eds) New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells. NATO Science Series II: Mathematics, Physics and Chemistry, vol 229. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4812-2_36

Download citation

Publish with us

Policies and ethics