Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 229))

Abstract

High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium-ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)–based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. A. N. Dey, B. P. Sullivan, J. Electrochem. Soc., 117, 222 (1970).

    CAS  Google Scholar 

  2. M. Yoshio, H. Wang, K. Fukuda, Y. Hara and Y. Adachi, J. Electrochem. Soc., 147 (4), 1245 (2000).

    Article  CAS  Google Scholar 

  3. H. Wang and M. Yoshio, J. Power Sources, 93, 123 (2001).

    Article  CAS  Google Scholar 

  4. J. Liu, A. Kahaian, I. Belharouak, S. Kang, S. Oliver, G. Henriksen and K. Amine. “Screening Report on Cell Materials for High-Power Li-ion HEV Batteries”, ANL-03/16, DOE report, April, 2003.

    Google Scholar 

  5. I. Kuribayashi, M. Yokoyama, and M. Yamashita, J. Power Sources, 54, 1 (1995).

    Article  CAS  Google Scholar 

  6. D. Aurbach, M. D. Levi, E. Levi, A. Schechter, J. Phys. Chem. B, 101, 2195 (1997).

    Article  CAS  Google Scholar 

  7. K. Amine and J. Liu, ITE Letters, Vol.1, No.1, B39 (2000).

    Google Scholar 

  8. “PNGV Battery Test Manual”, Revision 1, Idaho National Engineering Laboratory, Department of Energy, DOE/ID-10597 (May, 1998).

    Google Scholar 

  9. PNGV Test Plan For Advanced Technology Development Gen 2 Lithium Ion Cells, EHV-TP-121, Revision 6, October 5, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Liu, J., Vissers, D., Amine, K., Barsukov, I., Doninger, J. (2006). SURFACE TREATED NATURAL GRAPHITE AS ANODE MATERIAL FOR HIGH-POWER LI-ION BATTERY APPLICATIONS. In: Barsukov, I.V., Johnson, C.S., Doninger, J.E., Barsukov, V.Z. (eds) New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells. NATO Science Series II: Mathematics, Physics and Chemistry, vol 229. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4812-2_22

Download citation

Publish with us

Policies and ethics