Skip to main content

Abstract

Taking into account the high-energy demand of electric vehicles, an important research effort is devoted for developing a new generation of power sources. In the case of lithium-ion batteries, the main attention is paid to designing materials with improved electrochemical performance. The negative electrode of commercial lithium-ion batteries is usually graphite, which reversible lithium intercalation capacity is limited to one lithium for six carbon atoms in standard conditions [1]. Due to their higher storage capacity, nanostructured carbons, such as hard carbons, seem to be promising materials in replacement of graphite [2]. However, they demonstrate a noticeable hysteresis and irreversibility, which can preclude a practical application [2,3]. Despite the huge number of publications on the subject within the last years, the causes of these two important drawbacks are not yet clearly elucidated. Hence, the understanding of the insertiondeinsertion mechanisms in nanostructured carbons is a key for improving the performance of this kind of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Guérard D., Hérold A., Carbon 1975; 13: 337

    Article  Google Scholar 

  2. Zheng T., Dahn J.R., Applications of carbon in Lithium-ion batteries, In Carbon materials for advanced technologies, Burchell T.D. Ed., Elsevier, Oxford, 1999, pp 341–388.

    Google Scholar 

  3. Frackowiak E., Béguin F., Carbon 2002; 40: 1775.

    Article  CAS  Google Scholar 

  4. Naji A., Ghanbaja J., Humbert B., Willmann P., Billaud D., J. Power Sources 1996; 63: 33.

    Article  CAS  Google Scholar 

  5. Aurbach D., Zaban A., Ein-Eli Y., Weissman I., Chusid O., Markovsky B., Levi M., Levi E., Schechter A., Granot E., J. Power Sources 1997; 68: 91.

    Article  CAS  Google Scholar 

  6. Kanamura K., Tamura H., Shiraishi S., Takehara Z., J. Electroanal. Chem. 1995; 394: 49

    Article  CAS  Google Scholar 

  7. Fong R., Von Sacken U., Dahn J.R., J. Electrochem. Soc. 1990; 137: 2009

    Article  CAS  Google Scholar 

  8. Simon B., Flandrois S., Fevrier-Bouvier A., Biensan P., Mol. Cryst. Liq. Cryst. 1998; 310: 333

    CAS  Google Scholar 

  9. Winter M., Novak P., Monnier J., J. Electrochem. Soc. 1998; 145: 428.

    Article  CAS  Google Scholar 

  10. Buiel E., Dahn J.R., J. Electrochem. Soc. 1998; 145: 1977.

    Google Scholar 

  11. Duclaux L., Frackowiak E., Béguin F., J. Power Sources 1999; 81–82: 323.

    Google Scholar 

  12. Béguin F., Méténier K., Chevallier F., Azais P., Pellenq R., Bonnamy S., Duclaux L., Rouzaud J.N., Frackowiak E., Mol. Cryst. Liq. Cryst. 2002; 386: 151.

    Article  Google Scholar 

  13. Larcher D., Mudalige C., Gharghouri M., Dahn J.R., Electrochim. Acta 1999; 44: 4069.

    Article  CAS  Google Scholar 

  14. Y. Matsumura, S. Wang, J. Mondori, J. Electrochem. Soc. 1995; 142: 2914.

    Article  CAS  Google Scholar 

  15. Y. Matsumura, S. Wang, J. Mondori, Carbon 1995; 33: 1457.

    Article  CAS  Google Scholar 

  16. Azaϊs P., Duclaux L., Faugère A.M., Béguin F., Appl. Phys. Lett., 2002; 81: 775.

    Article  Google Scholar 

  17. Y. Matsumura, S. Wang, Y. Nakagawa, C. Yamaguchi, Synth. Met. 1997; 85: 1411.

    Article  CAS  Google Scholar 

  18. M. Winter, H. Buqa, B. Evers, T. Hodal, K.C. Moller, C. Reisinger, M.V. Santis Alvarez, I. Schneider, G.H. Wrodnigg, F.P. Netzer, R.I.R. Blyth, M.G. Ramsey, P. Golob, F. Hofer, C. Grogger, W. Kern, R. Saf, J.O. Besenhard, Monatsh. Chem. 2001; 132: 473.

    CAS  Google Scholar 

  19. Xing W., Dahn J.R., J. Electrochem. Soc. 1997; 144: 1195.

    Article  CAS  Google Scholar 

  20. Aurbach D., Schechter A., Electrochim. Acta 2001; 46: 2395.

    Article  CAS  Google Scholar 

  21. Guérin K., Février-Bouvier A., Flandrois S., Simon B., Biensan P., Electrochim. Acta 2000; 45: 1607.

    Article  Google Scholar 

  22. Guérin K., Ménétrier M., Février-Bouvier A., Flandrois S., Simon B., Biensan P., Solid State Ionics 2000; 127:187.

    Article  Google Scholar 

  23. Lu W., Chung DDL, Carbon 2001; 39: 493.

    Article  CAS  Google Scholar 

  24. M. Kikuchi, Y. Ikezawa, T. Takamura, J. Electroanal. Chem. 1995; 396: 451.

    Article  CAS  Google Scholar 

  25. R. Alcantara, F.J. Fernandez-Madrigal, P. Lavela, J.L. Tirado, J.M. Jimenez-Mateos, C. Gomez de Salazar, R. Stoyanova, E. Zhecheva, Carbon 2000; 38: 1031.

    Article  CAS  Google Scholar 

  26. Béguin F., Chevallier F., Vix C., Saadallah S., Rouzaud J.N., Frackowiak E., J. Phys. Chem. Solids 2004; 65: 211.

    Article  Google Scholar 

  27. Y. Wu, C. Jiang, C. Wan, E. Tsuchida, Electrochem. Comm. 2000; 2: 626.

    Article  CAS  Google Scholar 

  28. M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, J. Electrochem. Soc. 2000; 147: 1245.

    Article  CAS  Google Scholar 

  29. Kuribayashi I., Yokoyama M., Yamashita M., J. Power Sources 1995; 54: 1.

    Article  CAS  Google Scholar 

  30. Yoon S., Kim H., Oh S.M., J. Power Sources 2001; 94: 68.

    Article  CAS  Google Scholar 

  31. Natajaran C., Fujimoto H., Tokumitsu K., Mabuchi A., Kasuh T., Carbon 2001; 39: 409.

    Google Scholar 

  32. Lahaye J., Dentzer J., Soulard P., Ehrburger P. Carbon gasification : The active site concept. In Fundamental Issues of Control of Carbon Gasification Reactivity, Lahaye J, Ehrburger P. Ed., Academic Publishers, London, 1991, p. 143–158

    Google Scholar 

  33. Laine N.R., Vastola F.J., Walker P.L. Jr., J. Phys. Chem. 1963; 67: 2030.

    CAS  Google Scholar 

  34. Tarascon J.M., Gozdz A.S., Scmutz C., Shokoohi F., Warren P.C., Solid State Ionics 1996; 86–88: 49.

    Article  Google Scholar 

  35. Gautier S., Leroux F., Frackowiak E., Faugère A.M., Rouzaud J.N., Béguin F., J. Phys. Chem. A 2001; 105: 5794.

    Article  CAS  Google Scholar 

  36. Guérin K, Ménétrier M., Février-Bouvier A., Flandrois S., Simon B., Biensan P., Solid State Ionics 2000; 127: 187.

    Article  Google Scholar 

  37. Letellier M., Chevallier F., Clinard C., Frackowiak E., Rouzaud J.N., Béguin F., J. Chem. Phys. 2003; 118: 6038.

    Article  CAS  Google Scholar 

  38. Chevallier F., Letellier M., Morcrette M., Tarascon J.M., Frackowiak E., Rouzaud J.N., Béguin F., Electrochem. Solid State Lett.2003; 6: A225.

    Article  CAS  Google Scholar 

  39. C. Conard J., Estrade H., Mat. Science Engineering 1997; 31: 173.

    Article  Google Scholar 

  40. Imanishi N., Kumai K., Kokugan H., Takeda Y., Yamamoto O., Solid State Ionics 1998; 107: 135.

    Article  CAS  Google Scholar 

  41. Tatsumi K., Zaghib K., Sawada Y., Abe H., Ohsaki T., in Rechargeable Lithium and Lithium-Ion Batteries, Megahed S., Barnett B.M., Xie L. Editors, PV 94–28, p. 97, The Electrochemical Society Proceedings Series, Pennington, NJ (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Béguin, F. et al. (2006). MECHANISMS OF REVERSIBLE AND IRREVERSIBLE INSERTION IN NANOSTRUCTURED CARBONS USED FOR Li-ION BATTERIES. In: Barsukov, I.V., Johnson, C.S., Doninger, J.E., Barsukov, V.Z. (eds) New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells. NATO Science Series II: Mathematics, Physics and Chemistry, vol 229. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4812-2_17

Download citation

Publish with us

Policies and ethics