Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 137))

  • 4171 Accesses

Abstract

This paper is concerned with optimal design problems where we assume that the coefficients in the state equation have small contrast. Making an asymptotic expansion up to second order with respect to the contrast greatly simplifies the optimization problem. By using the notion of H-measures we are able to prove general existence theorems for small amplitude optimal design and to provide simple and efficient numerical algorithms for their computation. A key feature of this type of problems is that optimal microstructures are always simple laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Allaire, Shape Optimization by the Homogenization Method, Springer-Verlag (2002).

    Google Scholar 

  2. G. Allaire and S. Gutierrez, Optimal Design in Small Amplitude Homogenization, CMAP preprint 576, submitted (2005).

    Google Scholar 

  3. G. Allaire, F. Jouve and H. Maillot, Topology optimization for minimum stress design with the homogenization method, Struct. Multidiscip. Optim., 28(2–3), 87–98 (2004).

    MathSciNet  Google Scholar 

  4. J.C. Bellido and P. Pedregal, Explicit quasiconvexification for some cost functionals depending on derivatives of the state in optimal designing, Discr. Contin. Dyn. Syst., 8(4), 967–982 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bendsoe and O. Sigmund, Topology Optimization. Theory, Methods, and Applications, Springer Verlag, New York (2003).

    Google Scholar 

  6. A. Cherkaev, Variational Methods for Structural Optimization, Springer Verlag, New York (2000).

    MATH  Google Scholar 

  7. P. Duysinx and M. Bendsoe, Topology optimization of continuum structures with local stress constraints, Int. J. Num. Meth. Engng., 43, 1453–1478 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Gerard, Microlocal defect measures, Comm. Partial Diff. Equations, 16, 1761–1794 (1991).

    MATH  MathSciNet  Google Scholar 

  9. Y. Grabovsky, Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals, Adv. in Appl. Math., 27, 683–704 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Hecht, O. Pironneau and K. Ohtsuka, FreeFem++ Manual, downloadable at http://www.freefem.org

    Google Scholar 

  11. R. Lipton and A. Velo, Optimal design of gradient fields with applications to electrostatics, in Nonlinear Partial Differential Equations and Their Applications, D. Cioranescu and J.-L. Lions (eds), College de France Seminar, Vol. XIV, Elsevier, pp. 509–532 (2002). Stud. Math. Appl., 31 (2002).

    Google Scholar 

  12. R. Lipton, Relaxation through homogenization for optimal design problems with gradient constraints, J. Optim. Theory Appl., 114(1), 27–53 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Lipton, Stress constrained G closure and relaxation of structural design problems, Quart. Appl. Math., 62(2), 295–321 (2004).

    MATH  MathSciNet  Google Scholar 

  14. G. Milton, The Theory of Composites, Cambridge University Press (2001).

    Google Scholar 

  15. F. Murat and L. Tartar, Calcul des variations et homogénéisation, Les Méthodes de l’Homogénéisation Théorie et Applications en Physique, Coll. Dir. Etudes et Recherches EDF, 57, Eyrolles, Paris, pp. 319–369 (1985). English translation in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R. Kohn (eds), Progress in Nonlinear Differential Equations and Their Applications, Vol. 31, Birkhäuser, Boston (1997).

    Google Scholar 

  16. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. of Royal Soc. Edinburgh, 115A, 193–230 (1990).

    MathSciNet  Google Scholar 

  17. L. Tartar, Remarks on optimal design problems, in Calculus of Variations, Homogenization and Continuum Mechanics (Marseille, 1993), Ser. Adv. Math. Appl. Sci., Vol. 18, World Sci. Publishing, River Edge, NJ, pp. 279–296 (1994).

    Google Scholar 

  18. L. Tartar, An introduction to the homogenization method in optimal design, in Optimal Shape Design (Tróia, 1998), A. Cellina and A. Ornelas (eds), Lecture Notes in Mathematics, Vol. 1740, Springer, Berlin, pp. 47–156 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Allaire, G., Gutiérrez, S. (2006). Optimal Design with Small Contrast. In: Bendsøe, M.P., Olhoff, N., Sigmund, O. (eds) IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Solid Mechanics and Its Applications, vol 137. Springer, Dordrecht . https://doi.org/10.1007/1-4020-4752-5_14

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4752-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4729-9

  • Online ISBN: 978-1-4020-4752-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics