Skip to main content

Effectors of Ras-Mediated Oncogenesis

  • Chapter
Book cover RAS Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 4))

  • 734 Accesses

Abstract

Ras proteins activate cytoplasmic signaling cascades that mediate responses in growth, cellular differentiation, and survival. Therefore, it is not surprising that mutationally activated Ras proteins have been found in many human cancers. Determining the effector protein signaling pathways through which Ras causes cellular transformation is important for creating targeted therapeutics that will specifically block the oncogenic effects of activated Ras. In 1993, Raf serine/threonine kinases were identified as key downstream effectors of Ras signaling and transformation. While Raf remains the best characterized Ras effector, the rapid expansion of the Ras effector pool has demonstrated that Ras transforming activity is also mediated by Raf-independent effector signaling pathways. These include phosphatidylinositol 3-kinase and phospholipase regulators of phospholipid metabolism, and guanine nucleotide exchange factors and activators of Ras-related proteins. Further complexity arose when a new and seemingly incongruous group of pro-apoptotic Ras effectors with tumor suppressor function was identified. This chapter will summarize recent findings of mutational activation of B-Raf in human cancers and examine the importance of non-Raf effectors in Ras-mediated signaling and transformation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoyama, Y., Avruch, J. and Zhang, X.F. (2004) Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene 23, 3426-3433.

    PubMed  CAS  Google Scholar 

  • Bachman, K.E., Argani, P., Samuels, Y., Silliman, N., Ptak, J., Szabo, S., Konishi, H., Karakas, B., Blair, B.G., Lin, C., Peters, B.A., Velculescu, V.E. and Park, B.H. (2004) The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol. Ther. 3, 772-775.

    PubMed  CAS  Google Scholar 

  • Bai, Y., Edamatsu, H., Maeda, S., Saito, H., Suzuki, N., Satoh, T. and Kataoka, T. (2004) Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res. 64, 8808-8810.

    PubMed  CAS  Google Scholar 

  • Bar-Sagi, D. and Hall, A. (2000) Ras and Rho GTPases: a family reunion. Cell 103, 227-238.

    PubMed  CAS  Google Scholar 

  • Bernards, A. and Settleman, J. (2004) GAP control: regulating the regulators of small GTPases. Trends Cell Biol. 14, 377-385.

    PubMed  CAS  Google Scholar 

  • Broderick, D.K., Di, C., Parrett, T.J., Samuels, Y.R., Cummins, J.M., McLendon, R.E., Fults, D.W., Velculescu, V.E., Bigner, D.D. and Yan, H. (2004) Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 64, 5048-5050.

    PubMed  CAS  Google Scholar 

  • Cantor, S.B., Urano, T. and Feig, L.A. (1995) Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol. Cell. Biol. 15, 4578-4584.

    PubMed  CAS  Google Scholar 

  • Chen, J., Lui, W.O., Vos, M.D., Clark, G.J., Takahashi, M., Schoumans, J., Khoo, S.K., Petillo, D., Lavery, T., Sugimura, J., Astuti, D., Zhang, C., Kagawa, S., Maher, E.R., Larsson, C., Alberts, A.S., Kanayama, H.O. and Teh, B.T. (2003) The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell 4, 405-413.

    PubMed  CAS  Google Scholar 

  • Chien, Y. and White, M.A. (2003) RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep. 4, 800-806.

    PubMed  CAS  Google Scholar 

  • Chong, H., Vikis, H.G. and Guan, K.L. (2003) Mechanisms of regulating the Raf kinase family. Cell. Signal. 15, 463-469.

    PubMed  CAS  Google Scholar 

  • Chow, L.S., Lo, K.W., Kwong, J., Wong, A.Y. and Huang, D.P. (2004) Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma. Oncol. Rep. 12, 781-787.

    PubMed  CAS  Google Scholar 

  • Cohen, Y., Xing, M., Mambo, E., Guo, Z., Wu, G., Trink, B., Beller, U., Westra, W.H., Ladenson, P.W. and Sidransky, D. (2003) BRAF mutation in papillary thyroid carcinoma. J. Natl. Cancer Inst. 95, 625-627.

    PubMed  CAS  Google Scholar 

  • Corvera, S. and Czech, M.P. (1998) Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442-446.

    PubMed  CAS  Google Scholar 

  • Cowley, S., Paterson, H., Kemp, P. and Marshall, C.J. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841-852.

    PubMed  CAS  Google Scholar 

  • Cox, A.D. and Der, C.J. (2003) The dark side of Ras: regulation of apoptosis. Oncogene 22, 8999-9006.

    PubMed  CAS  Google Scholar 

  • Crompton, A.M., Foley, L.H., Wood, A., Roscoe, W., Stokoe, D., McCormick, F., Symons, M. and Bollag, G. (2000) Regulation of Tiam1 nucleotide exchange activity by pleckstrin domain binding ligands. J. Biol. Chem. 275, 25751-25759.

    PubMed  CAS  Google Scholar 

  • Dammann, R., Li, C., Yoon, J.H., Chin, P.L., Bates, S. and Pfeifer, G.P. (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat. Genet. 25, 315-319.

    PubMed  CAS  Google Scholar 

  • Dammann, R., Schagdarsurengin, U., Liu, L., Otto, N., Gimm, O., Dralle, H., Boehm, B.O., Pfeifer, G.P. and Hoang-Vu, C. (2003a) Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene 22, 3806-3812.

    CAS  Google Scholar 

  • Dammann, R., Schagdarsurengin, U., Strunnikova, M., Rastetter, M., Seidel, C., Liu, L., Tommasi, S. and Pfeifer, G.P. (2003b) Epigenetic inactivation of the Ras-association domain family 1 (RASSF1A) gene and its function in human carcinogenesis. Histol. Histopathol. 18, 665-677.

    CAS  Google Scholar 

  • Dammann, R., Schagdarsurengin, U., Seidel, C., Strunnikova, M., Rastetter, M., Baier, K. and Pfeifer, G.P. (2005) The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol. Histopathol. 20, 645-663.

    CAS  Google Scholar 

  • Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M.J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B.A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G.J., Bigner, D.D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J.W., Leung, S.Y., Yuen, S.T., Weber, B.L., Seigler, H.F., Darrow, T.L., Paterson, H., Marais, R., Marshall, C.J., Wooster, R., Stratton, M.R. and Futreal, P.A. (2002) Mutations of the BRAF gene in human cancer. Nature 417, 949-954.

    PubMed  CAS  Google Scholar 

  • de Bruyn, K.M., de Rooij, J., Wolthuis, R.M., Rehmann, H., Wesenbeek, J., Cool, R.H., Wittinghofer, A.H. and Bos, J.L. (2000) RalGEF2, a pleckstrin homology domain containing guanine nucleotide exchange factor for Ral. J. Biol. Chem. 275, 29761-29766.

    PubMed  Google Scholar 

  • Eckert, L.B., Repasky, G.A., Ulku, A.S., McFall, A., Zhou, H., Sartor, C.I. and Der, C.J. (2004) Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 64, 4585-4592.

    PubMed  CAS  Google Scholar 

  • Eckfeld, K., Hesson, L., Vos, M.D., Bieche, I., Latif, F. and Clark, G.J. (2004) RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res. 64, 8688-8693.

    PubMed  CAS  Google Scholar 

  • Engers, R., Zwaka, T.P., Gohr, L., Weber, A., Gerharz, C.D. and Gabbert, H.E. (2000) Tiam1 mutations in human renal-cell carcinomas. Int. J. Cancer 88, 369-376.

    PubMed  CAS  Google Scholar 

  • Feig, L.A. (2003) Ral-GTPases: approaching their 15 minutes of fame. Trends Cell Biol. 13, 419-425.

    PubMed  CAS  Google Scholar 

  • Feig, L.A. and Buchsbaum, R.J. (2002) Cell signaling: life or death decisions of ras proteins. Curr. Biol. 12, R259-R261.

    PubMed  CAS  Google Scholar 

  • Garnett, M.J. and Marais, R. (2004) Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6, 313-319.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Garcia, A., Pritchard, C.A., Paterson, H.F., Mavria, G., Stamp, G. and Marshall, C.J. (2005) RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7, 219-226.

    PubMed  CAS  Google Scholar 

  • Habets, G.G., Scholtes, E.H., Zuydgeest, D., van der Kammen, R.A., Stam, J.C., Berns, A. and Collard, J.G. (1994) Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77, 537-549.

    PubMed  CAS  Google Scholar 

  • Hamad, N.M., Elconin, J.H., Karnoub, A.E., Bai, W., Rich, J.N., Abraham, R.T., Der, C.J. and Counter, C.M. (2002) Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045-2057.

    PubMed  CAS  Google Scholar 

  • Han, J., Luby-Phelps, K., Das, B., Shu, X., Xia, Y., Mosteller, R.D., Krishna, U.M., Falck, J.R., White, M.A. and Broek, D. (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558-560.

    PubMed  CAS  Google Scholar 

  • Han, M., Golden, A., Han, Y. and Sternberg, P.W. (1993) C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363, 133-140.

    PubMed  CAS  Google Scholar 

  • Herrmann, C. (2003) Ras–effector interactions: after one decade. Curr. Opin. Struct. Biol. 13, 122-129.

    PubMed  CAS  Google Scholar 

  • Hesson, L., Dallol, A., Minna, J.D., Maher, E.R. and Latif, F. (2003) NORE1A, a homologue of RASSF1A tumour suppressor gene is inactivated in human cancers. Oncogene 22, 947-954.

    PubMed  CAS  Google Scholar 

  • Hofer, F., Fields, S., Schneider, C. and Martin, G.S. (1994) Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc. Natl. Acad. Sci. U.S.A. 91, 11089-11093.

    PubMed  CAS  Google Scholar 

  • Jullien-Flores, V., Dorseuil, O., Romero, F., Letourneur, F., Saragosti, S., Berger, R., Tavitian, A., Gacon, G. and Camonis, J.H. (1995) Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J. Biol. Chem. 270, 22473-22477.

    PubMed  CAS  Google Scholar 

  • Kalhammer, G., Bahler, M., Schmitz, F., Jockel, J. and Block, C. (1997) Ras-binding domains: predicting function versus folding. FEBS Lett. 414, 599-602.

    PubMed  CAS  Google Scholar 

  • Kang, S., Bader, A.G. and Vogt, P.K. (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. U.S.A. 102, 802-807.

    PubMed  CAS  Google Scholar 

  • Karim, F.D., Chang, H.C., Therrien, M., Wassarman, D.A., Laverty, T. and Rubin, G.M. (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143, 315-329.

    PubMed  CAS  Google Scholar 

  • Kelley, G.G., Reks, S.E., Ondrako, J.M. and Smrcka, A.V. (2001) Phospholipase C (epsilon): a novel Ras effector. EMBO J. 20, 743-754.

    PubMed  CAS  Google Scholar 

  • Khokhlatchev, A., Rabizadeh, S., Xavier, R., Nedwidek, M., Chen, T., Zhang, X.F., Seed, B. and Avruch, J. (2002) Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 12, 253-265.

    PubMed  CAS  Google Scholar 

  • Khosravi-Far, R. and Der, C.J. (1995) Prenylation analysis of bacterially expressed and insect cell-expressed Ras and Ras-related proteins. Methods Enzymol. 255, 46-60.

    PubMed  CAS  Google Scholar 

  • Khosravi-Far, R., Solski, P.A., Clark, G.J., Kinch, M.S. and Der, C.J. (1995) Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15, 6443-6453.

    PubMed  CAS  Google Scholar 

  • Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P.H. and Downward, J. (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16, 2783-2793.

    PubMed  CAS  Google Scholar 

  • Kiel, C., Wohlgemuth, S., Rousseau, F., Schymkowitz, J., Ferkinghoff-Borg, J., Wittinghofer, F. and Serrano, L. (2005) Recognizing and defining true Ras binding domains II: in silico prediction based on homology modelling and energy calculations. J. Mol. Biol. 348, 759-775.

    PubMed  CAS  Google Scholar 

  • Kikuchi, A., Demo, S.D., Ye, Z.H., Chen, Y.W. and Williams, L.T. (1994) ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol. 14, 7483-7491.

    PubMed  CAS  Google Scholar 

  • Kimura, E.T., Nikiforova, M.N., Zhu, Z., Knauf, J.A., Nikiforov, Y.E. and Fagin, J.A. (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63, 1454-1457.

    PubMed  CAS  Google Scholar 

  • Kolch, W., Heidecker, G., Lloyd, P. and Rapp, U.R. (1991) Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349, 426-428.

    PubMed  CAS  Google Scholar 

  • Krasilnikov, M.A. (2000) Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc.) 65, 59-67.

    CAS  Google Scholar 

  • Lambert, J.M., Karnoub, A.E., Graves, L.M., Campbell, S.L. and Der, C.J. (2002a) Role of MLK3-mediated activation of p70 S6 kinase in Rac1 transformation. J. Biol. Chem. 277, 4770-4777.

    CAS  Google Scholar 

  • Lambert, J.M., Lambert, Q.T., Reuther, G.W., Malliri, A., Siderovski, D.P., Sondek, J., Collard, J.G. and Der, C.J. (2002b) Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat. Cell Biol. 4, 621-625.

    CAS  Google Scholar 

  • Leevers, S.J., Paterson, H.F. and Marshall, C.J. (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411-414.

    PubMed  CAS  Google Scholar 

  • Lerman, M.I. and Minna, J.D. (2000) The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 60, 6116-6133.

    PubMed  CAS  Google Scholar 

  • Liao, Y., Kariya, K., Hu, C.D., Shibatohge, M., Goshima, M., Okada, T., Watari, Y., Gao, X., Jin, T.G., Yamawaki-Kataoka, Y. and Kataoka, T. (1999) RA-GEF, a novel Rap1A guanine nucleotide exchange factor containing a Ras/Rap1A-associating domain, is conserved between nematode and humans. J. Biol. Chem. 274, 37815-37820.

    PubMed  CAS  Google Scholar 

  • Lim, K.-H., Baines, A.T., Fiordalisi, J.J., Shipitsin, M., Feig, L.A., Cox, A.D., Der, C.J. and Counter, C.M. (2005) Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 7, 533-545.

    PubMed  CAS  Google Scholar 

  • Liu, L., Wu, D.H. and Ding, Y.Q. (2005) Tiam1 gene expression and its significance in colorectal carcinoma. World J. Gastroenterol. 11, 705-707.

    PubMed  CAS  Google Scholar 

  • Lopez, I., Mak, E.C., Ding, J., Hamm, H.E. and Lomasney, J.W. (2001) A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J. Biol. Chem. 276, 2758-2765.

    PubMed  CAS  Google Scholar 

  • Lucas, L., Penalva, V., Ramirez de Molina, A., Del Peso, L. and Lacal, J.C. (2002) Modulation of phospholipase D by Ras proteins mediated by its effectors Ral-GDS, PI3K and Raf-1. Int. J. Oncol. 21, 477-485.

    PubMed  CAS  Google Scholar 

  • Luo, J., Manning, B.D. and Cantley, L.C. (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257-262.

    PubMed  CAS  Google Scholar 

  • Malliri, A., van der Kammen, R.A., Clark, K., van der Valk, M., Michiels, F. and Collard, J.G. (2002) Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417, 867-871.

    PubMed  CAS  Google Scholar 

  • Malumbres, M. and Barbacid, M. (2003) RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459-465.

    PubMed  CAS  Google Scholar 

  • Mansour, S.J., Matten, W.T., Hermann, A.S., Candia, J.M., Rong, S., Fukasawa, K., Vande Woude, G.F. and Ahn, N.G. (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966-970.

    PubMed  CAS  Google Scholar 

  • Matheny, S.A., Chen, C., Kortum, R.L., Razidlo, G.L., Lewis, R.E. and White, M.A. (2004) Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427, 256-260.

    PubMed  CAS  Google Scholar 

  • McFall, A., Ulku, A., Lambert, Q.T., Kusa, A., Rogers-Graham, K. and Der, C.J. (2001) Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol. Cell. Biol. 21, 5488-5499.

    PubMed  CAS  Google Scholar 

  • Mercer, K.E. and Pritchard, C.A. (2003) Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta 1653, 25-40.

    PubMed  CAS  Google Scholar 

  • Michiels, F., Habets, G.G., Stam, J.C., van der Kammen, R.A. and Collard, J.G. (1995) A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338-340.

    PubMed  CAS  Google Scholar 

  • Minard, M.E., Herynk, M.H., Collard, J.G. and Gallick, G.E. (2005) The guanine nucleotide exchange factor Tiam1 increases colon carcinoma growth at metastatic sites in an orthotopic nude mouse model, Oncogene 24, 2568-2573.

    PubMed  CAS  Google Scholar 

  • Mitsiades, C.S., Mitsiades, N. and Koutsilieris, M. (2004) The Akt pathway: molecular targets for anti-cancer drug development. Curr. Cancer Drug Targets 4, 235-256.

    PubMed  CAS  Google Scholar 

  • Moodie, S.A., Willumsen, B.M., Weber, M.J. and Wolfman, A. (1993) Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658-1661.

    PubMed  CAS  Google Scholar 

  • Muller-Decker, K., Neufang, G., Berger, I., Neumann, M., Marks, F. and Furstenberger, G. (2002) Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 99, 12483-12488.

    PubMed  CAS  Google Scholar 

  • Okazaki, M., Kishida, S., Murai, H., Hinoi, T. and Kikuchi, A. (1996) Ras-interacting domain of Ral GDP dissociation stimulator like (RGL) reverses v-Ras-induced transformation and Raf-1 activation in NIH3T3 cells. Cancer Res. 56, 2387-2392.

    PubMed  CAS  Google Scholar 

  • Oldham, S.M., Clark, G.J., Gangarosa, L.M., Coffey, R.J. Jr. and Der, C.J. (1996) Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 93, 6924-6928.

    PubMed  CAS  Google Scholar 

  • Oldham, S.M., Cox, A.D., Reynolds, E.R., Sizemore, N.S., Coffey, R.J. Jr. and Der, C.J. (1998) Ras, but not Src, transformation of RIE-1 epithelial cells is dependent on activation of the mitogen-activated protein kinase cascade. Oncogene 16, 2565-2573.

    PubMed  CAS  Google Scholar 

  • Ortiz-Vega, S., Khokhlatchev, A., Nedwidek, M., Zhang, X.F., Dammann, R., Pfeifer, G.P. and Avruch, J. (2002) The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene 21, 1381-1390.

    PubMed  CAS  Google Scholar 

  • Parsons, R. (2004) Human cancer, PTEN and the PI-3 kinase pathway. Semin. Cell Dev. Biol. 15, 171-176.

    PubMed  CAS  Google Scholar 

  • Peterson, S.N., Trabalzini, L., Brtva, T.R., Fischer, T., Altschuler, D.L., Martelli, P., Lapetina, E.G., Der, C.J. and White, G.C. 2nd (1996) Identification of a novel RalGDS-related protein as a candidate effector for Ras and Rap1. J. Biol. Chem. 271, 29903-29908.

    PubMed  CAS  Google Scholar 

  • Pfeifer, G.P., Yoon, J.H., Liu, L., Tommasi, S., Wilczynski, S.P. and Dammann, R. (2002) Methylation of the RASSF1A gene in human cancers. Biol. Chem. 383, 907-914.

    PubMed  CAS  Google Scholar 

  • Ponting, C.P. and Benjamin, D.R. (1996) A novel family of Ras-binding domains. Trends Biochem. Sci. 21, 422-425.

    PubMed  CAS  Google Scholar 

  • Qiu, R.G., Chen, J., Kirn, D., McCormick, F. and Symons, M. (1995a) An essential role for Rac in Ras transformation. Nature 374, 457-459.

    CAS  Google Scholar 

  • Qiu, R.G., Chen, J., McCormick, F. and Symons, M. (1995b) A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. U.S.A. 92, 11781-11785.

    CAS  Google Scholar 

  • Quilliam, L.A., Rebhun, J.F. and Castro, A.F. (2002) A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog. Nucleic Acid Res. Mol. Biol. 71, 391-444.

    PubMed  CAS  Google Scholar 

  • Rajagopalan, H., Bardelli, A., Lengauer, C., Kinzler, K.W., Vogelstein, B. and Velculescu, V.E. (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418, 934.

    PubMed  CAS  Google Scholar 

  • Rangarajan, A. and Weinberg, R.A. (2003) Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat. Rev. Cancer 3, 952-959.

    PubMed  CAS  Google Scholar 

  • Repasky, G.A., Chenette, E.J. and Der, C.J. (2004) Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol. 14, 639-647.

    PubMed  CAS  Google Scholar 

  • Rhee, S.G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281-312.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P.H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M.J., Waterfield, M.D. and Downward, J. (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527-532.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P.H., Khwaja, A., Marte, B.M., Pappin, D., Das, P., Waterfield, M.D., Ridley, A. and Downward, J. (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89, 457-467.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Sabatier, C. and McCormick, F. (2004) Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell. Biol. 24, 4943-4954.

    PubMed  CAS  Google Scholar 

  • Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S.M., Riggins, G.J., Willson, J.K., Markowitz, S., Kinzler, K.W., Vogelstein, B. and Velculescu, V.E. (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554.

    PubMed  CAS  Google Scholar 

  • Sawyers, C.L. (2003) Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev. 17, 2998-3010.

    PubMed  CAS  Google Scholar 

  • Schaap, D., van der Wal, J., Howe, L.R., Marshall, C.J. and van Blitterswijk, W.J. (1993) A dominant-negative mutant of raf blocks mitogen-activated protein kinase activation by growth factors and oncogenic p21ras. J. Biol. Chem. 268, 20232-20236.

    PubMed  CAS  Google Scholar 

  • Schulze, A., Lehmann, K., Jefferies, H.B., McMahon, M. and Downward, J. (2001) Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15, 981-994.

    PubMed  CAS  Google Scholar 

  • Sebolt-Leopold, J.S. and Herrera, R. (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 4, 937-947.

    PubMed  CAS  Google Scholar 

  • Shao, H. and Andres, D.A. (2000) A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras. J. Biol. Chem. 275, 26914-26924.

    PubMed  CAS  Google Scholar 

  • Shayesteh, L., Lu, Y., Kuo, W.L., Baldocchi, R., Godfrey, T., Collins, C., Pinkel, D., Powell, B., Mills, G.B. and Gray, J.W. (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99-102.

    PubMed  CAS  Google Scholar 

  • Shipitsin, M. and Feig, L.A. (2004) RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol. Cell. Biol. 24, 5746-5756.

    PubMed  CAS  Google Scholar 

  • Shivakumar, L., Minna, J., Sakamaki, T., Pestell, R. and White, M.A. (2002) The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol. Cell. Biol. 22, 4309-4318.

    PubMed  CAS  Google Scholar 

  • Sieben, N.L., Macropoulos, P., Roemen, G.M., Kolkman-Uljee, S.M., Jan Fleuren, G., Houmadi, R., Diss, T., Warren, B., Al Adnani, M., De Goeij, A.P., Krausz, T. and Flanagan, A.M. (2004) In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J. Pathol. 202, 336-340.

    PubMed  CAS  Google Scholar 

  • Singer, G., Oldt, R. 3rd, Cohen, Y., Wang, B.G., Sidransky, D., Kurman, R.J. and Shih Ie, M. (2003) Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl. Cancer Inst. 95, 484-486.

    PubMed  CAS  Google Scholar 

  • Sjolander, A., Yamamoto, K., Huber, B.E. and Lapetina, E.G. (1991) Association of p21ras with phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U.S.A. 88, 7908-7912.

    PubMed  CAS  Google Scholar 

  • Song, C., Hu, C.D., Masago, M., Kariyai, K., Yamawaki-Kataoka, Y., Shibatohge, M., Wu, D., Satoh, T. and Kataoka, T. (2001) Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J. Biol. Chem. 276, 2752-2757.

    PubMed  CAS  Google Scholar 

  • Sorli, S.C., Bunney, T.D., Sugden, P.H., Paterson, H.F. and Katan, M. (2005) Signaling properties and expression in normal and tumor tissues of two phospholipase C epsilon splice variants. Oncogene 24, 90-100.

    PubMed  CAS  Google Scholar 

  • Spaargaren, M. and Bischoff, J.R. (1994) Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap. Proc. Natl. Acad. Sci. U.S.A. 91, 12609-12613.

    PubMed  CAS  Google Scholar 

  • Spaargaren, M., Martin, G.A., McCormick, F., Fernandez-Sarabia, M.J. and Bischoff, J.R. (1994) The Ras-related protein R-ras interacts directly with Raf-1 in a GTP-dependent manner. Biochem. J. 300 (2), 303-307.

    PubMed  CAS  Google Scholar 

  • Spugnardi, M., Tommasi, S., Dammann, R., Pfeifer, G.P. and Hoon, D.S. (2003) Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res. 63, 1639-1643.

    PubMed  CAS  Google Scholar 

  • Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M. and Hancock, J.F. (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463-1467.

    PubMed  CAS  Google Scholar 

  • Tchevkina, E., Agapova, L., Dyakova, N., Martinjuk, A., Komelkov, A. and Tatosyan, A. (2005) The small G-protein RalA stimulates metastasis of transformed cells. Oncogene 24, 329-335.

    PubMed  CAS  Google Scholar 

  • Tommasi, S., Dammann, R., Jin, S.G., Zhang, X.F., Avruch, J. and Pfeifer, G.P. (2002) RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21, 2713-2720.

    PubMed  CAS  Google Scholar 

  • Tsao, H., Goel, V., Wu, H., Yang, G. and Haluska, F.G. (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol. 122, 337-341.

    CAS  Google Scholar 

  • Tuveson, D.A., Shaw, A.T., Willis, N.A., Silver, D.P., Jackson, E.L., Chang, S., Mercer, K.L., Grochow, R., Hock, H., Crowley, D., Hingorani, S.R., Zaks, T., King, C., Jacobetz, M.A., Wang, L., Bronson, R.T., Orkin, S.H., DePinho, R.A. and Jacks, T. (2004) Endogenous oncogenic K-ras (G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375-387.

    PubMed  CAS  Google Scholar 

  • Ulku, A.S. and Der, C.J. (2003) Ras signaling, deregulation of gene expression and oncogenesis. Cancer Treat. Res. 115, 189-208.

    PubMed  CAS  Google Scholar 

  • Ulku, A.S., Schafer, R. and Der, C.J. (2003) Essential role of Raf in Ras transformation and deregulation of matrix metalloproteinase expression in ovarian epithelial cells. Mol. Cancer Res. 1, 1077-1088.

    PubMed  Google Scholar 

  • Urano, T., Emkey, R. and Feig, L.A. (1996) Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15, 810-816.

    PubMed  CAS  Google Scholar 

  • van Engeland, M., Roemen, G.M., Brink, M., Pachen, M.M., Weijenberg, M.P., de Bruine, A.P., Arends, J.W., van den Brandt, P.A., de Goeij, A.F. and Herman, J.G. (2002) K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 21, 3792-3795.

    PubMed  Google Scholar 

  • Vanhaesebroeck, B., Leevers, S.J., Panayotou, G. and Waterfield, M.D. (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267-272.

    PubMed  CAS  Google Scholar 

  • Vavvas, D., Li, X., Avruch, J. and Zhang, X.F. (1998) Identification of Nore1 as a potential Ras effector. J. Biol. Chem. 273, 5439-5442.

    PubMed  CAS  Google Scholar 

  • Vetter, I.R. and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304.

    PubMed  CAS  Google Scholar 

  • Vojtek, A.B., Hollenberg, S.M. and Cooper, J.A. (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205-214.

    PubMed  CAS  Google Scholar 

  • Vos, M.D., Ellis, C.A., Bell, A., Birrer, M.J. and Clark, G.J. (2000) Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J. Biol. Chem. 275, 35669-35672.

    PubMed  CAS  Google Scholar 

  • Vos, M.D., Ellis, C.A., Elam, C., Ulku, A.S., Taylor, B.J. and Clark, G.J. (2003a) RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. J. Biol. Chem. 278, 28045-28051.

    CAS  Google Scholar 

  • Vos, M.D., Martinez, A., Ellis, C.A., Vallecorsa, T. and Clark, G.J. (2003b) The pro-apoptotic Ras effector Nore1 may serve as a Ras-regulated tumor suppressor in the lung. J. Biol. Chem. 278, 21938-21943.

    CAS  Google Scholar 

  • Voss, M., Weernink, P.A., Haupenthal, S., Moller, U., Cool, R.H., Bauer, B., Camonis, J.H., Jakobs, K.H. and Schmidt, M. (1999) Phospholipase D stimulation by receptor tyrosine kinases mediated by protein kinase C and a Ras/Ral signaling cascade. J. Biol. Chem. 274, 34691-34698.

    PubMed  CAS  Google Scholar 

  • Warne, P.H., Viciana, P.R. and Downward, J. (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352-355.

    PubMed  CAS  Google Scholar 

  • Welch, H.C., Coadwell, W.J., Ellson, C.D., Ferguson, G.J., Andrews, S.R., Erdjument-Bromage, H., Tempst, P., Hawkins, P.T. and Stephens, L.R. (2002) P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 108, 809-821.

    PubMed  CAS  Google Scholar 

  • Wellbrock, C., Karasarides, M. and Marais, R. (2004a) The RAF proteins take centre stage. Nat. Rev. Mol. Cell. Biol. 5, 875-885.

    CAS  Google Scholar 

  • Wellbrock, C., Ogilvie, L., Hedley, D., Karasarides, M., Martin, J., Niculescu-Duvaz, D., Springer, C.J. and Marais, R. (2004b) V599EB-RAF is an oncogene in melanocytes. Cancer Res. 64, 2338-2342.

    CAS  Google Scholar 

  • Wennerberg, K., Rossman, K.L. and Der, C.J. (2005) The Ras superfamily at a glance. J. Cell Sci. 118, 843-846.

    PubMed  CAS  Google Scholar 

  • Westwick, J.K., Cox, A.D., Der, C.J., Cobb, M.H., Hibi, M., Karin, M. and Brenner, D.A. (1994) Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular signal-regulated kinases. Proc. Natl. Acad. Sci. U.S.A. 91, 6030-6034.

    PubMed  CAS  Google Scholar 

  • White, M.A., Vale, T., Camonis, J.H., Schaefer, E. and Wigler, M.H. (1996) A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271, 16439-16442.

    PubMed  CAS  Google Scholar 

  • Wohlgemuth, S., Kiel, C., Kramer, A., Serrano, L., Wittinghofer, F. and Herrmann, C. (2005) Recognizing and defining true ras binding domains I: biochemical analysis. J. Mol. Biol. 348, 741-758.

    PubMed  CAS  Google Scholar 

  • Yoon, J.H., Dammann, R. and Pfeifer, G.P. (2001) Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int. J. Cancer 94, 212-217.

    PubMed  CAS  Google Scholar 

  • Zhang, Q.X., Davis, I.D. and Baldwin, G.S. (1996) Controlled overexpression of selected domains of the P85 subunit of phosphatidylinositol 3-kinase reverts v-Ha-Ras transformation. Biochim. Biophys. Acta 1312, 207-214.

    PubMed  Google Scholar 

  • Zhang, X.F., Settleman, J., Kyriakis, J.M., Takeuchi-Suzuki, E., Elledge, S.J., Marshall, M.S., Bruder, J.T., Rapp, U.R. and Avruch, J. (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308-313.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Chenette, E.J., Repasky, G.A., Der, C.J. (2006). Effectors of Ras-Mediated Oncogenesis. In: Der, C. (eds) RAS Family GTPases. Proteins and Cell Regulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4708-8_6

Download citation

Publish with us

Policies and ethics