Skip to main content

RAS and the RAF/MEK/ERK Cascade

  • Chapter

Part of the book series: Proteins and Cell Regulation ((PROR,volume 4))

Abstract

The Raf/MEK/ERK protein kinases constitute a key effector cascade used by Ras to relay signals regulating cell growth, survival, proliferation, and differentiation. These kinases are activated in a sequential manner through direct phosphorylation. Raf is the initiating kinase that interacts with membrane-localized GTP-bound Ras. The signal is then transduced from Raf to MEK and from MEK to ERK, ultimately resulting in the phosphorylation of critical cellular targets by activated ERK. In addition to the core enzymes of the cascade, various scaffolding proteins and signaling modulators have been identified that affect the efficiency and level of signaling through this important kinase cascade. An emerging concept is that these factors contribute to the spatiotemporal control of Ras/ERK signaling, allowing sensitive activation and deactivation of the pathway in response to diverse extracellular cues

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, D., Podar, K., Pacher, M., Kubicek, M., Welzel, N., Hemmings, B.A., Dilworth, S.M., Mischak, H., Kolch, W. and Baccarini, M. (2000) Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J. Biol. Chem. 275, 22300-22304.

    PubMed  CAS  Google Scholar 

  • Adachi, M., Fukuda, M. and Nishida, E. (1999) Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J. 18, 5347-5358.

    PubMed  CAS  Google Scholar 

  • Alessi, D.R., Saito, Y., Campbell, D.G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C.J. and Cowley, S. (1994) Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J. 13, 1610-1619.

    PubMed  CAS  Google Scholar 

  • Alessi, D.R., Gomez, N., Moorhead, G., Lewis, T., Keyse, S.M. and Cohen, P. (1995) Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr. Biol. 5, 283-295.

    PubMed  CAS  Google Scholar 

  • Anselmo, A.N., Bumeister, R., Thomas, J.M. and White, M.A. (2002) Critical contribution of linker proteins to Raf kinase activation. J. Biol. Chem. 277, 5940-5943.

    PubMed  CAS  Google Scholar 

  • Blanco-Aparicio, C., Torres, J. and Pulido, R. (1999) A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J. Cell Biol. 147, 1129-1136.

    PubMed  CAS  Google Scholar 

  • Borg, J.P., Marchetto, S., Le Bivic, A., Ollendorff, V., Jaulin-Bastard, F., Saito, H., Fournier, E., Adelaide, J., Margolis, B. and Birnbaum, D. (2000) ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nat. Cell Biol. 2, 407-414.

    PubMed  CAS  Google Scholar 

  • Boulton, T.G., Yancopoulos, G.D., Gregory, J.S., Slaughter, C., Moomaw, C., Hsu, J. and Cobb, M.H. (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 64-67.

    PubMed  CAS  Google Scholar 

  • Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radziejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H. and Yancopoulos, G.D. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675.

    PubMed  CAS  Google Scholar 

  • Brondello, J.M., Brunet, A., Pouyssegur, J. and McKenzie, F.R. (1997) The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44 MAPK cascade. J. Biol. Chem. 272, 1368-1376.

    PubMed  CAS  Google Scholar 

  • Brondello, J.M., Pouyssegur, J. and Mckenzie, F.R. (1999) Reduced MAP kinase phosphatase-1 degradation after p42/p44 MAPK-dependent phosphorylation. Science 286, 2514-2517.

    PubMed  CAS  Google Scholar 

  • Brunet, A., Roux, D., Lenormand, P., Dowd, S., Keyse, S. and Pouyssegur, J. (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 18, 664-674.

    PubMed  CAS  Google Scholar 

  • Cacace, A.M., Michaud, N.R., Therrien, M., Mathes, K., Copeland, T., Rubin, G.M. and Morrison, D.K. (1999) Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol. Cell. Biol. 19, 229-240.

    PubMed  CAS  Google Scholar 

  • Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U. and Arkinstall, S. (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262-1265.

    PubMed  CAS  Google Scholar 

  • Camps, M., Nichols, A. and Arkinstall, S. (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14, 6-16.

    PubMed  CAS  Google Scholar 

  • Catling, A.D., Schaeffer, H.J., Reuter, C.W., Reddy, G.R. and Weber, M.J. (1995) A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function. Mol. Cell. Biol. 15, 5214-5225.

    PubMed  CAS  Google Scholar 

  • Chaudhary, A., King, W.G., Mattaliano, M.D., Frost, J.A., Diaz, B., Morrison, D.K., Cobb, M.H., Marshall, M.S. and Brugge, J.S. (2000) Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr. Biol. 10, 551-554.

    PubMed  CAS  Google Scholar 

  • Chen, R.H., Sarnecki, C. and Blenis, J. (1992) Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol. Cell. Biol. 12, 915-927.

    PubMed  CAS  Google Scholar 

  • Chong, H., Lee, J. and Guan, K.L. (2001) Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J. 20, 3716-3727.

    PubMed  CAS  Google Scholar 

  • Chong, H. and Guan, K.-L. (2003) Regulation of Raf through phosphorylation and N-terminus–C terminus interaction. J. Biol. Chem. 278, 36269-36276.

    PubMed  CAS  Google Scholar 

  • Chong, H., Vikis, H.G. and Guan, K.L. (2003) Mechanisms of regulating the Raf kinase family. Cell. Signal. 15, 463-469.

    PubMed  CAS  Google Scholar 

  • Clark, G.J., Drugan, J.K., Rossman, K.L., Carpenter, J.W., Rogers-Graham, K., Fu, H., Der, C.J. and Campbell, S.L. (1997) 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J. Biol. Chem. 272, 20990-20993.

    PubMed  CAS  Google Scholar 

  • Cook, S.J., Rubinfeld, B., Albert, I. and McCormick, F. (1993) RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12, 3475-3485.

    PubMed  CAS  Google Scholar 

  • Corbit, K.C., Trakul, N., Eves, E.M., Diaz, B., Marshall, M. and Rosner, M.R. (2003) Activation of Raf-1 signaling by protein Kinase C through a mechanism Involving Raf kinase inhibitory protein. J. Biol. Chem. 278, 13061-13068.

    PubMed  CAS  Google Scholar 

  • Cowley, S., Paterson, H., Kemp, P. and Marshall, C.J. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841-852.

    PubMed  CAS  Google Scholar 

  • Cutler, R.E.J., Stephens, R.M., Saracino, M.R. and Morrison, D.K. (1998) Autoregulation of the Raf-1 serine/threonine kinase. Proc. Natl. Acad. Sci. U.S.A. 95, 9214-9219.

    PubMed  CAS  Google Scholar 

  • Dang, A., Frost, J.A. and Cobb, M.H. (1998) The MEK1 proline-rich insert is required for efficient activation of the mitogen-activated protein kinases ERK1 and ERK2 in mammalian cells. J. Biol. Chem. 273, 19909-19913.

    PubMed  CAS  Google Scholar 

  • Daum, G., Eisenmann-Tappe, I., Fries, H.W., Troppmair, J. and Rapp, U.R. (1994) The ins and outs of Raf kinases. Trends Biochem. Sci. 19, 474-480.

    PubMed  CAS  Google Scholar 

  • Davies, H., Bignell, G.R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M.J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B.A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G.J., Bigner, D.D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J.W., Leung, S.Y., Yuen, S.T., Weber, B.L., Seigler, H.F., Darrow, T.L. and Paterson, H. (2002) Mutations of the BRAF gene in human cancer. Nature 417, 949-954.

    PubMed  CAS  Google Scholar 

  • Denouel-Galy, A., Douville, E.M., Warne, P.H., Papin, C., Laugier, D., Calothy, G., Downward, J. and Eychene, A. (1998) Murine Ksr interacts with MEK and inhibits Ras-induced transformation. Curr. Biol. 8, 46-55.

    PubMed  CAS  Google Scholar 

  • Dhaka, A., Costa, R.M., Hu, H., Irvin, D.K., Patel, A., Kornblum, H.I., Silva, A.J., O’Dell, T.J. and Colicelli, J. (2003) The RAS effector RIN1 modulates the formation of aversive memories. J. Neurosci. 23, 748-757.

    PubMed  CAS  Google Scholar 

  • Dhillon, A.S., Meikle, S., Yazici, Z., Eulitz, M. and Kolch, W. (2002) Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J. 21, 64-71.

    PubMed  CAS  Google Scholar 

  • Dougherty, M.K., Müller, J., Ritt, D.A., Zhou, M., Zhou, X.Z., Copeland, T.D., Conrads, T.P., Veenstra, T.D., Lu, K.P. and Morrison, D.K. (2005) Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215-224.

    PubMed  CAS  Google Scholar 

  • Duesbery, N.S., Webb, C.P., Leppla, S.H., Gordon, V.M., Klimpel, K.R., Copeland, T.D., Ahn, N.G., Oskarsson, M.K., Fukasawa, K., Paull, K.D. and Vande Woude, G.F. (1998) Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734-737.

    PubMed  CAS  Google Scholar 

  • Dumaz, N. and Marais, R. (2003) Protein kinase A blocks Raf-1 activity by stimulating 14-3-3 binding and blocking Raf-1 interaction with Ras. J. Biol. Chem. 278, 29819-29823.

    PubMed  CAS  Google Scholar 

  • Eblen, S.T., Slack, J.K., Weber, M.J. and Catling, A.D. (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol. Cell. Biol. 22, 6023-6033.

    PubMed  CAS  Google Scholar 

  • Eblen, S.T., Slack-Davis, J.K., Tarcsafalvi, A., Parsons, J.T., Weber, M.J. and Catling, A.D. (2004) Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol. Cell. Biol. 24, 2308-2317.

    PubMed  CAS  Google Scholar 

  • Elion, E.A. (2001) The Ste5p scaffold. J. Cell Sci. 114, 3967-3978.

    PubMed  CAS  Google Scholar 

  • Fabian, J.R., Daar, I.O. and Morrison, D.K. (1993) Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13, 7170-7179.

    PubMed  CAS  Google Scholar 

  • Farrar, M.A., Alberol, I. and Perlmutter, R.M. (1996) Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383, 178-181.

    PubMed  CAS  Google Scholar 

  • Ferrell Jr., J.E. and Bhatt, R.R. (1997) Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J. Biol. Chem. 272, 19008-19016.

    PubMed  CAS  Google Scholar 

  • Fong, C.W., Leong, H.F., Wong, E.S.M., Lim, J., Yusoff, P. and Guy, G.R. (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J. Biol. Chem. 278, 33456-33464.

    PubMed  CAS  Google Scholar 

  • Formstecher, E., Ramos, J.W., Fauquet, M., Calderwood, D.A., Hsieh, J.C., Canton, B., Nguyen, X.T., Barnier, J.V., Camonis, J., Ginsberg, M.H. and Chneiweiss, H. (2001) PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell 1, 239-250.

    PubMed  CAS  Google Scholar 

  • Frost, J.A., Steen, H., Shapiro, P., Lewis, T., Ahn, N., Shaw, P.E. and Cobb, M.H. (1997) Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16, 6426-6438.

    PubMed  CAS  Google Scholar 

  • Fukuda, M., Gotoh, I., Gotoh, Y. and Nishida, E. (1996) Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J. Biol. Chem. 271, 20024-20028.

    PubMed  CAS  Google Scholar 

  • Fukuda, M., Gotoh, Y. and Nishida, E. (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901-1908.

    PubMed  CAS  Google Scholar 

  • Galanis, A., Yang, S.H. and Sharrocks, A.D. (2001) Selective targeting of MAPKs to the ETS domain transcription factor SAP-1. J. Biol. Chem. 276, 965-973.

    PubMed  CAS  Google Scholar 

  • Gardner, A.M., Vaillancourt, R.R., Lange-Carter, C.A. and Johnson, G.L. (1994) MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity. Mol. Biol. Cell 5, 193-201.

    PubMed  CAS  Google Scholar 

  • Ghosh, S., Strum, J.C., Sciorra, V.A., Daniel, L. and Bell, R.M. (1996) Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. J. Biol. Chem. 271, 8472-8480.

    PubMed  CAS  Google Scholar 

  • Gonzalez, F., Seth, A., Raden, D., Bowman, D., Fay, F. and Davis, R. (1993) Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J. Cell Biol. 122, 1089-1101.

    PubMed  CAS  Google Scholar 

  • Gonzalez, F.A., Raden, D.L. and Davis, R.J. (1991) Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J. Biol. Chem. 266, 22159-22163.

    PubMed  CAS  Google Scholar 

  • Guan, K.-L., Figueroa, C., Brtva, T.R., Zhu, T., Taylor, J., Barber, T.D. and Vojtek, A.B. (2000) Negative regulation of the serine/threonine kinase B-Raf by Akt. J. Biol. Chem. 275, 27354-27359.

    PubMed  CAS  Google Scholar 

  • Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. and Krasnow, M.A. (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253-263.

    PubMed  CAS  Google Scholar 

  • Hagemann, C. and Rapp, U.R. (1999) Isotype-specific functions of Raf kinases. Exp. Cell Res. 253, 34-46.

    PubMed  CAS  Google Scholar 

  • Hall, A.B., Jura, N., DaSilva, J., Jang, Y.J., Gong, D. and Bar-Sagi, D. (2003) hSpry2 Is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr. Biol. 13, 308-314.

    PubMed  CAS  Google Scholar 

  • Hamilton, M., Liao, J., Cathcart, M.K. and Wolfman, A. (2001) Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules. J. Biol. Chem. 276, 29079-29090.

    PubMed  CAS  Google Scholar 

  • Han, L. and Colicelli, J. (1995) A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1. Mol. Cell. Biol. 15, 1318-1323.

    PubMed  CAS  Google Scholar 

  • Hanafusa, H., Torii, S., Yasunaga, T. and Nishida, E. (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat. Cell Biol. 4, 850-858.

    PubMed  CAS  Google Scholar 

  • Haystead, T.A., Dent, P., Wu, J., Haystead, C.M. and Sturgill, T.W. (1992) Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett. 306, 17-22.

    PubMed  CAS  Google Scholar 

  • Heidecker, G., Huleihel, M., Cleveland, J.L., Kolch, W., Beck, T.W., Lloyd, P., Pawson, T. and Rapp, U.R. (1990) Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol. Cell. Biol. 10, 2503-2512.

    PubMed  CAS  Google Scholar 

  • Hekman, M., Hamm, H., Villar, A.V., Bader, B., Kuhlmann, J., Nickel, J. and Rapp, U.R. (2002) Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers. J. Biol. Chem. 277, 24090-24102.

    PubMed  CAS  Google Scholar 

  • Herrmann, C., Martin, G.A. and Wittinghofer, A. (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270, 2901-2905.

    PubMed  CAS  Google Scholar 

  • Hu, C.D., Kariya, K., Tamada, M., Akasaka, K., Shirouzu, M., Yokoyama, S. and Kataoka, T. (1995) Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J. Biol. Chem. 270, 30274-30277.

    PubMed  CAS  Google Scholar 

  • Huang, Y.Z., Zang, M., Xiong, W.C., Luo, Z. and Mei, L. (2003) Erbin suppresses the MAP kinase pathway. J. Biol. Chem. 278, 1108-1114.

    PubMed  CAS  Google Scholar 

  • Jacobs, D., Glossip, D., Xing, H., Muslin, A.J. and Kornfeld, K. (1999) Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163-175.

    PubMed  CAS  Google Scholar 

  • Jaffe, A.B., Aspenstrom, P. and Hall, A. (2004) Human CNK1 acts as a scaffold protein, linking Rho and Ras signal transduction pathways. Mol. Cell. Biol. 24, 1736-1746.

    PubMed  CAS  Google Scholar 

  • Keyse, S.M. (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr. Opin. Cell Biol. 12, 186-192.

    PubMed  CAS  Google Scholar 

  • Khokhlatchev, A.V., Canagarajah, B., Wilsbacher, J., Robinson, M., Atkinson, M., Goldsmith, E. and Cobb, M.H. (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605-615.

    PubMed  CAS  Google Scholar 

  • King, A.J., Sun, H., Diaz, B., Barnard, D., Miao, W., Bagrodia, S. and Marshall, M.S. (1998) The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396, 180-183.

    PubMed  CAS  Google Scholar 

  • Kornfeld, K., Hom, D.B. and Horvitz, H.R. (1995) The Ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83, 903-913.

    PubMed  CAS  Google Scholar 

  • Kosako, H., Nishida, E. and Gotoh, Y. (1993) cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J. 12, 787-794.

    PubMed  CAS  Google Scholar 

  • Lanigan, T.M., Liu, A., Huang, Y.Z., Mei, L., Margolis, B. and Guan, K.L. (2003) Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. FASEB J. 17, 2048-2060.

    PubMed  CAS  Google Scholar 

  • Lee, T., Hoofnagle, A.N., Kabuyama, Y., Stroud, J., Min, X., Goldsmith, E.J., Chen, L., Resing, K.A. and Ahn, N.G. (2004) Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol. Cell 14, 43-55.

    PubMed  CAS  Google Scholar 

  • Leevers, S.J., Paterson, H.F. and Marshall, C.J. (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411-414.

    PubMed  CAS  Google Scholar 

  • Lenormand, P., Sardet, C., Pages, G., L’Allemain, G., Brunet, A. and Pouyssegur, J. (1993) Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J. Cell Biol. 122, 1079-1088.

    PubMed  CAS  Google Scholar 

  • Lenormand, P., Brondello, J.-M., Brunet, A. and Pouyssegur, J. (1998) Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J. Cell Biol. 142, 625-633.

    PubMed  CAS  Google Scholar 

  • Li, W., Han, M. and Guan, K.-L. (2000) The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev. 14, 895-900.

    PubMed  CAS  Google Scholar 

  • Luo, Z., Tzivion, G., Belshaw, P.J., Vavvas, D., Marshall, M. and Avruch, J. (1996) Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383, 181-185.

    PubMed  CAS  Google Scholar 

  • Luo, Z., Diaz, B., Marshall, M.S. and Avruch, J. (1997) An intact Raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent Raf activation in situ. Mol. Cell. Biol. 17, 46-53.

    PubMed  CAS  Google Scholar 

  • Mansour, S.J., Matten, W.T., Hermann, A.S., Candia, J.M., Rong, S., Fukasawa, K., Vande Woude, G.F. and Ahn, N.G. (1994a) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966-970.

    CAS  Google Scholar 

  • Mansour, S.J., Resing, K.A., Candi, J.M., Hermann, A.S., Gloor, J.W., Herskind, K.R., Wartmann, M., Davis, R.J. and Ahn, N.G. (1994b) Mitogen-activated protein (MAP) kinase phosphorylation of MAP kinase kinase: determination of phosphorylation sites by mass spectrometry and site-directed mutagenesis. J. Biochem. 116, 304-314.

    CAS  Google Scholar 

  • Marais, R., Light, Y., Paterson, H.F. and Marshall, C.J. (1995) Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 14, 3136-3145.

    PubMed  CAS  Google Scholar 

  • Marais, R., Light, Y., Paterson, H.F., Mason, C.S. and Marshall, C.J. (1997) Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272, 4378-4383.

    PubMed  CAS  Google Scholar 

  • Mason, C.S., Springer, C.J., Cooper, R.G., Superti-Furga, G., Marshall, C.J. and Marais, R. (1999) Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137-2148.

    PubMed  CAS  Google Scholar 

  • Matheny, S.A., Chen, C., Kortum, R.L., Razidlo, G.L., Lewis, R.E. and White, M.A. (2004) Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427, 256-260.

    PubMed  CAS  Google Scholar 

  • Matsubayashi, Y., Fukuda, M. and Nishida, E. (2001) Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J. Biol. Chem. 276, 41755-41760.

    PubMed  CAS  Google Scholar 

  • McPherson, R.A., Harding, A., Roy, S., Lane, A. and Hancock, J.F. (1999) Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. Oncogene 18, 3862-3869.

    PubMed  CAS  Google Scholar 

  • Menice, C.B., Hulvershorn, J., Adam, L.P., Wang, C.-L.A. and Morgan, K.G. (1997) Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J. Biol. Chem. 272, 25157-25161.

    PubMed  CAS  Google Scholar 

  • Michaud, N.R., Fabian, J.R., Mathes, K.D. and Morrison, D.K. (1995) 14-3-3 is not essential for Raf-1 function: Identification of Raf-1 proteins that are biologically activated in a 14-3-3 and Ras-independent manner. Mol. Cell. Biol. 15, 3390-3397.

    PubMed  CAS  Google Scholar 

  • Michaud, N.R., Therrien, M., Cacace, A., Edsall, L.C., Spiegel, S., Rubin, G.M. and Morrison, D.K. (1997) KSR stimulates Raf-1 activity in a kinase-independent manner. Proc. Natl. Acad. Sci. U.S.A. 94, 12792-12796.

    PubMed  CAS  Google Scholar 

  • Müller, J., Ory, S., Copeland, T., Piwnica-Worms, H. and Morrison, D.K. (2001) C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell 8, 983-993.

    PubMed  Google Scholar 

  • Muslin, A.J., Tanner, J.W., Allen, P.M. and Shaw, A.S. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897.

    PubMed  CAS  Google Scholar 

  • Oh-hora, M., Ogata, M., Mori, Y., Adachi, M., Imai, K., Kosugi, A. and Hamaoka, T. (1999) Direct suppression of TCR-mediated activation of extracellular signal-regulated kinase by leukocyte protein tyrosine phosphatase, a tyrosine-specific phosphatase. J. Immunol. 163, 1282-1288.

    PubMed  CAS  Google Scholar 

  • Ohtsuka, T., Shimizu, K., Yamamori, B., Kuroda, S. and Takai, Y. (1996) Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J. Biol. Chem. 271, 1258-1261.

    PubMed  CAS  Google Scholar 

  • Okada, T., Hu, C.-D., Jin, T.-G., Kariya, K., Yamawaki-Kataoka, Y. and Kataoka, T. (1999) The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Mol. Cell. Biol. 19, 6057-6064.

    PubMed  CAS  Google Scholar 

  • Ory, S., Zhou, M., Conrads, T.P., Veenstra, T.D. and Morrison, D.K. (2003) Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. 13, 1356-1364.

    PubMed  CAS  Google Scholar 

  • Payne, D.M., Rossomando, A.J., Martino, P., Erickson, A.K., Her, J.H., Shabanowitz, J., Hunt, D.F., Weber, M.J. and Sturgill, T.W. (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J. 10, 885-892.

    PubMed  CAS  Google Scholar 

  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K. and Cobb, M.H. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183.

    PubMed  CAS  Google Scholar 

  • Pettiford, S.M. and Herbst, R. (2000) The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP. Oncogene 19, 858-869.

    PubMed  CAS  Google Scholar 

  • Rabizadeh, S., Xavier, R.J., Ishiguro, K., Bernabeortiz, J., Lopez-Ilasaca, M., Khokhlatchev, A., Mollahan, P., Pfeifer, G.P., Avruch, J. and Seed, B. (2004) The scaffold protein CNK1 interacts with the tumor suppressor RASSF1A and augments RASSF1A-induced cell death. J. Biol. Chem. 279, 29247-29254.

    PubMed  CAS  Google Scholar 

  • Rapp, U.R., Goldsborough, M.D., Mark, G.E., Bonner, T.I., Groffen, J., Reynolds, F.H. Jr., and Stephenson, J.R. (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc. Natl. Acad. Sci. U.S.A. 80, 4218-4222.

    PubMed  CAS  Google Scholar 

  • Rizzo, M.A., Shome, K., Vasudevan, C., Stolz, D.B., Sung, T.-C., Frohman, M.A., Watkins, S.C. and Romero, G. (1999) Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent Raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J. Biol. Chem. 274, 1131-1139.

    PubMed  CAS  Google Scholar 

  • Robbins, D.J., Cheng, M., Zhen, E., Vanderbilt, C.A., Feig, L.A. and Cobb, M.H. (1992) Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc. Natl. Acad. Sci. U.S.A. 89, 6924-6928.

    PubMed  CAS  Google Scholar 

  • Robinson, M.J., Stippec, S.A., Goldsmith, E., White, M.A. and Cobb, M.H. (1998) A constitutively active and nuclear form of the MAP kinase ERK2 is sufficient for neurite outgrowth and cell transformation. Curr. Biol. 8, 1141-1150.

    PubMed  CAS  Google Scholar 

  • Rommel, C., Radziwill, G., Lovric, J., Noeldeke, J., Heinicke, T., Jones, D., Aitken, A. and Moelling, K. (1996) Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 12, 609-619.

    PubMed  CAS  Google Scholar 

  • Rommel, C., Clarke, B.A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D. and Glass, D.J. (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738-1741.

    PubMed  CAS  Google Scholar 

  • Roy, F., Laberge, G., Douziech, M., Ferland-McCollough, D. and Therrien, M. (2002) KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev. 16, 427-438.

    PubMed  CAS  Google Scholar 

  • Roy, S., Lane, A., Yan, J., McPherson, R. and Hancock, J.F. (1997) Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger. J. Biol. Chem. 272, 20139-20145.

    PubMed  CAS  Google Scholar 

  • Rubin, C., Litvak, V., Medvedovsky, H., Zwang, Y., Lev, S. and Yarden, Y. (2003) Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr. Biol. 13, 297-307.

    PubMed  CAS  Google Scholar 

  • Rubinfeld, H., Hanoch, T. and Seger, R. (1999) Identification of a cytoplasmic-retention sequence in ERK2. J. Biol. Chem. 274, 30349-30352.

    PubMed  CAS  Google Scholar 

  • Sasaki, A., Taketomi, T., Kato, R., Saeki, K., Nonami, A., Sasaki, M., Kuriyama, M., Saito, N., Shibuya, M. and Yoshimura, A. (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat. Cell Biol. 5, 427-432.

    PubMed  CAS  Google Scholar 

  • Schaeffer, H.J., Catling, A.D., Eblen, S.T., Collier, L.S., Krauss, A. and Weber, M.J. (1998) MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281, 1668-1671.

    PubMed  CAS  Google Scholar 

  • Schulte, T.W., Blagosklonny, M.V., Romanova, L., Mushinski, J.F., Monia, B.P., Johnston, J.F., Nguyen, P., Trepel, J. and Neckers, L.M. (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell. Biol. 16, 5839-5845.

    PubMed  CAS  Google Scholar 

  • Seidel, J.J. and Graves, B.J. (2002) An ERK2 docking site in the pointed domain distinguishes a subset of ETS transcription factors. Genes Dev. 16, 127-137.

    PubMed  CAS  Google Scholar 

  • Sieburth, D.S., Sun, Q. and Han, M. (1998) SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94, 119-130.

    PubMed  CAS  Google Scholar 

  • Slack, D.N., Seternes, O.M., Gabrielsen, M. and Keyse, S.M. (2001) Distinct binding determinants for ERK2/p38alpha and JNK MAP kinases mediate catalytic activation and substrate selectivity of MAP kinase phosphatase-1. J. Biol. Chem. 276, 16491-16500.

    PubMed  CAS  Google Scholar 

  • Song, J., Takeda, M. and Morimoto, R.I. (2001) Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat. Cell Biol. 3, 276-282.

    PubMed  CAS  Google Scholar 

  • Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M. and Mumby, M. (1993) The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the MAP kinase pathway and induces cell proliferation. Cell 75, 887-897.

    PubMed  CAS  Google Scholar 

  • Stanton, V.P., Nichols, D.W., Laudano, A.P. and Cooper, G.M. (1989) Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol. Cell. Biol. 9, 639-647.

    PubMed  CAS  Google Scholar 

  • Stewart, S., Sundaram, M., Zhang, Y., Lee, J., Han, M. and Guan, K.L. (1999) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol. Cell. Biol. 19, 5523-5534.

    PubMed  CAS  Google Scholar 

  • Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M. and Hancock, J.F. (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463-1467.

    PubMed  CAS  Google Scholar 

  • Storm, S.M., Cleveland, J.L. and Rapp, U.R. (1990) Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 5, 345-351.

    PubMed  CAS  Google Scholar 

  • Sundaram, M. and Han, M. (1995) The C. elegans Ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83, 889-901.

    PubMed  CAS  Google Scholar 

  • Tanoue, T., Adachi, M., Moriguchi, T. and Nishida, E. (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat. Cell Biol. 2, 110-116.

    PubMed  CAS  Google Scholar 

  • Tanoue, T., Maeda, R., Adachi, M. and Nishida, E. (2001) Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J. 20, 466-479.

    PubMed  CAS  Google Scholar 

  • Tanoue, T. and Nishida, E. (2003) Molecular recognitions in the MAP kinase cascades. Cell. Signal. 15, 455-462.

    PubMed  CAS  Google Scholar 

  • Tarrega, C., Blanco-Aparicio, C., Munoz, J.J. and Pulido, R. (2002) Two clusters of residues at the docking groove of mitogen-activated protein kinases differentially mediate their functional interaction with the tyrosine phosphatases PTP-SL and STEP. J. Biol. Chem. 277, 2629-2636.

    PubMed  CAS  Google Scholar 

  • Teis, D., Wunderlich, W. and Huber, L.A. (2002) Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell 3, 803-814.

    PubMed  CAS  Google Scholar 

  • Therrien, M., Chang, H.C., Solomon, N.M., Karim, F.D., Wassarman, D.A. and Rubin, G.M. (1995) KSR, a novel protein kinase required for RAS signal transduction. Cell 83, 879-888.

    PubMed  CAS  Google Scholar 

  • Therrien, M., Wong, A.M. and Rubin, G.M. (1998) CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95, 343-353.

    PubMed  CAS  Google Scholar 

  • Tohgo, A., Pierce, K.L., Choy, E.W., Lefkowitz, R.J. and Luttrell, L.M. (2002) Beta-arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem. 277, 9429-9436.

    PubMed  CAS  Google Scholar 

  • Toril, S., Kusakabe, M., Yamamoto, T., Maekawa, M. and Nishida, E. (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev. Cell 7, 33-44.

    Google Scholar 

  • Tzivion, G., Luo, Z. and Avruch, J. (1998) A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394, 88-92.

    PubMed  CAS  Google Scholar 

  • Van Aelst, L., Barr, M., Marcus, S., Polverino, A. and Wigler, M. (1993) Complex formation between Ras and Raf and other protein kinases. Proc. Natl. Acad. Sci. U.S.A. 90, 6213-6217.

    PubMed  Google Scholar 

  • Vojtek, A.B., Hollenberg, S.M. and Cooper, J.A. (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205-214.

    PubMed  CAS  Google Scholar 

  • Volmat, V., Camps, M., Arkinstall, S., Pouyssegur, J. and Lenormand, P. (2001) The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. J. Cell Sci. 114, 3433-3443.

    PubMed  CAS  Google Scholar 

  • Wakioka, T., Sasaki, A., Kato, R., Shouda, T., Matsumoto, A., Miyoshi, K., Tsuneoka, M., Komiya, S., Baron, R. and Yoshimura, A. (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412, 647-651.

    PubMed  CAS  Google Scholar 

  • Wan, P.T., Garnett, M.J., Roe, S.M., Lee, S., Niculescu-Duvaz, D., Good, V.M., Jones, C.M., Marshall, C.J., Springer, C.J., Barford, D. and Marais, R. (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855-867.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Waldron, R.T., Dhaka, A., Patel, A., Riley, M.M., Rozengurt, E. and Colicelli, J. (2002) The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Mol. Cell. Biol. 22, 916-926.

    PubMed  CAS  Google Scholar 

  • Weber, C.K., Slupsky, J.R., Kalmes, H.A. and Rapp, U.R. (2001) Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 61, 3595-3598.

    PubMed  CAS  Google Scholar 

  • Whitehurst, A.W., Wilsbacher, J.L., You, Y., Luby-Phelps, K., Moore, M.S. and Cobb, M.H. (2002) ERK2 enters the nucleus by a carrier-independent mechanism. Proc. Natl. Acad. Sci. U.S.A. 99, 7496-7501.

    PubMed  CAS  Google Scholar 

  • Williams, J.G., Drugan, J.K., Yi, G.S., Clark, G.J., Der, C.J. and Campbell, S.L. (2000) Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J. Biol. Chem. 275, 22172-22179.

    PubMed  CAS  Google Scholar 

  • Wong, E.S., Fong, C.W., Lim, J., Yusoff, P., Low, B.C., Langdon, W.Y. and Guy, G.R. (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J. 21, 4796-4808.

    PubMed  CAS  Google Scholar 

  • Wu, J., Dent, P., Jelinek, T., Wolfman, A., Weber, M.J. and Sturgill, T.W. (1993) Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′, 5′-monophosphate. Science 262, 1065-1069.

    PubMed  CAS  Google Scholar 

  • Wunderlich, W., Fialka, I., Teis, D., Alpi, A., Pfeifer, A., Parton, R.G., Lottspeich, F. and Huber, L.A. (2001) A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J. Cell Biol. 152, 765-776.

    PubMed  CAS  Google Scholar 

  • Xu, B., Stippec, S., Robinson, F.L. and Cobb, M.H. (2001) Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J. Biol. Chem. 276, 26509-26515.

    CAS  Google Scholar 

  • Xu, B., Wilsbacher, J.L., Collisson, T. and Cobb, M.H. (1999) The N-terminal ERK-binding site of MEK1 is required for efficient feedback phosphorylation by ERK2 in vitro and ERK activation in vivo. J. Biol. Chem. 274, 34029-34035.

    PubMed  CAS  Google Scholar 

  • Yaffe, M.B., Schutkowski, M., Shen, M., Zhou, X.Z., Stukenberg, P.T., Rahfeld, J.U., Xu, J., Kuang, J., Kirschner, M.W., Fischer, G., Cantley, L.C. and Lu, K.P. (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957-1960.

    PubMed  CAS  Google Scholar 

  • Yao, I., Hata, Y., Ide, N., Hirao, K., Deguchi, M., Nishioka, H., Mizoguchi, A. and Takai, Y. (1999) MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J. Biol. Chem. 274, 11889-11896.

    PubMed  CAS  Google Scholar 

  • Yao, I., Ohtsuka, T., Kawabe, H., Matsuura, Y., Takai, Y. and Hata, Y. (2000) Association of membrane-associated guanylate kinase-interacting protein-1 with Raf-1. Biochem. Biophys. Res. Commun. 270, 538-542.

    CAS  Google Scholar 

  • Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katasanakis, K.D., Rose, D.W., Mischak, H., Sedivy, J.M. and Kolch, W. (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401, 173-177.

    PubMed  CAS  Google Scholar 

  • Yeung, K., Janosch, P., McFerran, B., Rose, D.W., Mischak, H., Sedivy, J.M. and Kolch, W. (2000) Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the Raf kinase inhibitor protein. Mol. Cell. Biol. 20, 3079-3085.

    PubMed  CAS  Google Scholar 

  • York, R.D., Yao, H., Dillon, T., Ellig, C.L., Eckert, S.P., McCleskey, E.W. and Stork, P.J. (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622-626.

    PubMed  CAS  Google Scholar 

  • Yu, W., Fantl, W.J., Harrowe, G. and Williams, L.T. (1998) Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr. Biol. 8, 56-64.

    PubMed  CAS  Google Scholar 

  • Yusoff, P., Lao, D.H., Ong, S.H., Wong, E.S., Lim, J., Lo, T.L., Leong, H.F., Fong, C.W. and Guy, G.R. (2002) Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195-3201.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Zhang, F., Ebert, D., Cobb, M.H. and Goldsmith, E.J. (1995) Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. Structure 3, 299-307.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Zhou, B., Zheng, C.F. and Zhang, Z.Y. (2003) A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates. J. Biol. Chem. 278, 29901-29912.

    PubMed  CAS  Google Scholar 

  • Zhang, X.F., Settleman, J., Kyriakis, J.M., Takeuchi-Suzuki, E., Elledge, S.J., Marshall, M.S., Bruder, J.T., Rapp, U.R. and Avruch, J. (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308-313.

    PubMed  CAS  Google Scholar 

  • Zheng, C. and Guan, K. (1993) Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 268, 11435-11439.

    PubMed  CAS  Google Scholar 

  • Zheng, C.F. and Guan, K.L. (1994) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J. 13, 1123-1131.

    PubMed  CAS  Google Scholar 

  • Zhou, M., Horita, D.A., Waugh, D.S., Byrd, R.A. and Morrison, D.K. (2002) Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J. Mol. Biol. 315, 435-446.

    PubMed  CAS  Google Scholar 

  • Zhou, X.Z., Kops, O., Werner, A., Lu, P.J., Shen, M., Stoller, G., Kullertz, G., Stark, M., Fischer, G. and Lu, K.P. (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873-883.

    PubMed  CAS  Google Scholar 

  • Zuniga, A., Torres, J., Ubeda, J. and Pulido, R. (1999) Interaction of mitogen-activated protein kinases with the kinase interaction motif of the tyrosine phosphatase PTP-SL provides substrate specificity and retains ERK2 in the cytoplasm. J. Biol. Chem. 274, 21900-21907.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Morrison, D.K., Daar, I.O. (2006). RAS and the RAF/MEK/ERK Cascade. In: Der, C. (eds) RAS Family GTPases. Proteins and Cell Regulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4708-8_4

Download citation

Publish with us

Policies and ethics