Skip to main content

Structural Principles of Ras Interaction with Regulators and Effectors

  • Chapter
RAS Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 4))

Abstract

In the past years, a considerable progress has been made in the fundamental understanding of the functions and underlying mechanisms of the proto-oncogen Ras. Comprehensive structural studies resulted in determination of more than 50 structures, which provided a deep insight into the three-dimensional folds, the consequences of ligand binding and hydrolysis, the principles of regulation and the specificity of effector binding. This chapter is concerned with the structural aspects of a molecular switch as a pivotal component of the signal transduction machinery

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadian, M.R., Wiesmuller, L., Lautwein, A., Bischoff, F.R. and Wittinghofer, A. (1996) Structural differences in the minimal catalytic domains of the GTPase-activating proteins p120GAP and neurofibromin. J. Biol. Chem. 271 , 16409-16415.

    PubMed  CAS  Google Scholar 

  • Ahmadian, M.R., Hoffmann, U., Goody, R.S. and Wittinghofer, A. (1997a) Individual rate constants for the interaction of Ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry 36 , 4535-4541.

    CAS  Google Scholar 

  • Ahmadian, M.R., Mittal, R., Hall, A. and Wittinghofer, A. (1997b) Aluminum fluoride associates with the small guanine nucleotide binding proteins. FEBS Lett. 408 , 315-318.

    CAS  Google Scholar 

  • Ahmadian, M.R., Stege, P., Scheffzek, K. and Wittinghofer, A. (1997c) Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat. Struct. Biol. 4, 686-689.

    CAS  Google Scholar 

  • Ahmadian, M.R., Zor, T., Vogt, D., Kabsch, W., Selinger, Z., Wittinghofer, A. and Scheffzek, K. (1999) Guanosine triphosphatase stimulation of oncogenic Ras mutants. Proc. Natl. Acad. Sci. U.S.A. 96, 7065-7070.

    PubMed  CAS  Google Scholar 

  • Ahmadian, M.R. (2002) Prospects for anti-ras drugs. Br. J. Haematol. 116, 511-518.

    PubMed  CAS  Google Scholar 

  • Ahmadian, M.R., Kiel, C., Stege, P. and Scheffzek, K. (2003) Structural fingerprints of the Ras-GTPase activating proteins neurofibromin and p120GAP. J. Mol. Biol. 329, 699-710.

    PubMed  CAS  Google Scholar 

  • Avruch, J., Khokhlatchev, A., Kyriakis, J.M., Luo, Z., Tzivion, G., Vavvas, D. and Zhang, X.F. (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog. Horm. Res. 56, 127-155.

    PubMed  CAS  Google Scholar 

  • Ballester, R., Marchuk, D., Boguski, M., Saulino, A., Letcher, R., Wigler, M. and Collins, F. (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851-859.

    PubMed  CAS  Google Scholar 

  • Barbacid, M. (1987) ras genes. Annu. Rev. Biochem. 56, 779-827.

    PubMed  CAS  Google Scholar 

  • Bernards, A. (2002) GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim. Biophys. Acta 1603, 47-82.

    Google Scholar 

  • Boguski, M.S. and McCormick, F. (1993) Proteins regulating Ras and its relatives. Nature 366, 643-654.

    PubMed  CAS  Google Scholar 

  • Bollag, G. and McCormick, F. (1991) Differential Regulation of rasGAP and neurofibromatosis gene product activities. Nature 351, 576-579.

    PubMed  CAS  Google Scholar 

  • Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. and Kuriyan, J. (1998) The structural basis of the activation of Ras by Sos. Nature 394, 337-343.

    PubMed  CAS  Google Scholar 

  • Bos, J.L. (1989) Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689.

    PubMed  CAS  Google Scholar 

  • Bos, J.L. (1998) All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. EMBO J. 17, 6776-6782.

    PubMed  CAS  Google Scholar 

  • Bourne, H.R., Sanders, D.A. and McCormick, F. (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132.

    PubMed  CAS  Google Scholar 

  • Bourne, H.R., Sanders, D.A. and McCormick, F. (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117-127.

    PubMed  CAS  Google Scholar 

  • Bowtell, D., Fu, P., Simon, M. and Senior, P. (1992) Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras. Proc. Natl. Acad. Sci. U.S.A. 89, 6511-6515.

    PubMed  CAS  Google Scholar 

  • Broek, D., Toda, T., Michaeli, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S. and Wigler, M. (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48, 789-799.

    PubMed  CAS  Google Scholar 

  • Buhrman, G., de Serrano, V. and Mattos, C. (2003) Organic solvents order the dynamic switch II in Ras crystals. Structure 11, 747-751.

    PubMed  CAS  Google Scholar 

  • Campbell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J., and Der, C.J. (1998) Increasing complexity of Ras signaling. Oncogene 17, 1395-1413.

    PubMed  CAS  Google Scholar 

  • Chardin, P., Camonis, J.H., Gale, N.W., van Aelst, L., Schlessinger, J., Wigler, M.H. and Bar-Sagi, D. (1993) Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338-1343.

    PubMed  CAS  Google Scholar 

  • Cherfils, J. and Chardin, P. (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 24, 306-311.

    PubMed  CAS  Google Scholar 

  • Cichowski, K. and Jacks, T. (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593-604.

    PubMed  CAS  Google Scholar 

  • Cool, R.H., Schmidt, G., Lenzen, C.U., Prinz, H., Vogt, D. and Wittinghofer, A. (1999) The Ras mutant D119N is both dominant negative and activated. Mol. Cell. Biol. 19, 6297-6305.

    PubMed  CAS  Google Scholar 

  • Der, C.J., Finkel, T. and Cooper, G.M. (1986) Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44, 167-176.

    PubMed  CAS  Google Scholar 

  • Diaz, J.F., Escalona, M.M., Kuppens, S. and Engelborghs, Y. (2000) Role of the switch II region in the conformational transition of activation of Ha-ras-p21. Protein Sci. 9, 361-368.

    PubMed  CAS  Google Scholar 

  • Donovan, S., Shannon, K.M. and Bollag, G. (2002) GTPase activating proteins: critical regulators of intracellular signaling. Biochim. Biophys. Acta 1602, 23-45.

    PubMed  CAS  Google Scholar 

  • Emerson, S.D., Madison, V.S., Palermo, R.E., Waugh, D.S., Scheffler, J.E., Tsao, K.L., Kiefer, S.E., Liu, S.P. and Fry, D.C. (1995) Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface. Biochemistry 34, 6911-6918.

    PubMed  CAS  Google Scholar 

  • Esser, D., Bauer, B., Wolthuis, R.M., Wittinghofer, A., Cool, R.H. and Bayer, P. (1998) Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf. Biochemistry 37, 13453-13462.

    PubMed  CAS  Google Scholar 

  • Farnsworth, C.L. and Feig, L.A. (1991) Dominant inhibitory mutations in the Mg(2+)-binding site of RasH prevent its activation by GTP. Mol. Cell. Biol. 11, 4822-4829.

    PubMed  CAS  Google Scholar 

  • Feig, L.A. (1999) Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat. Cell Biol. 1, E25-E27.

    PubMed  CAS  Google Scholar 

  • Franken, S.M., Scheidig, A.J., Krengel, U., Rensland, H., Lautwein, A., Geyer, M., Scheffzek, K., Goody, R.S., Kalbitzer, H.R. and Pai, E.F. (1993) Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 mutant of p21H-ras. Biochemistry 32, 8411-8420.

    PubMed  CAS  Google Scholar 

  • French, J.E., Libbus, B.L., Hansen, L., Spalding, J., Tice, R.R., Mahler, J. and Tennant, R.W. (1994) Cytogenetic analysis of malignant skin tumors induced in chemically treated TG-AC transgenic mice. Mol. Carcinog. 11, 215-226.

    PubMed  CAS  Google Scholar 

  • Gail, R., Costisella, B., Ahmadian, M.R. and Wittinghofer, A. (2001) Ras-mediated cleavage of a GTP analogue by a novel mechanism. Chembiochem 2, 570-575.

    PubMed  CAS  Google Scholar 

  • Geyer, M., Schweins, T., Herrmann, C., Prisner, T., Wittinghofer, A. and Kalbitzer, H.R. (1996) Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35, 10308-10320.

    PubMed  CAS  Google Scholar 

  • Geyer, M., Herrmann, C., Wohlgemuth, S., Wittinghofer, A. and Kalbitzer, H.R. (1997) Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat. Struct. Biol. 4, 694-699.

    PubMed  CAS  Google Scholar 

  • Gideon, P., John, J., Frech, M., Lautwein, A., Clark, R., Scheffler, J.E. and Wittinghofer, A. (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol. Cell. Biol. 12, 2050-2056.

    PubMed  CAS  Google Scholar 

  • Gronwald, W., Huber, F., Grunewald, P., Sporner, M., Wohlgemuth, S., Herrmann, C. and Kalbitzer, H.R. (2001) Solution structure of the Ras binding domain of the protein kinase Byr2 from Schizosaccharomyces pombe. Structure 9, 1029-1041.

    PubMed  CAS  Google Scholar 

  • Hall, B.E., Yang, S.S., Boriack-Sjodin, P.A., Kuriyan, J. and Bar-Sagi, D. (2001) Structure-based mutagenesis reveals distinct functions for Ras switch 1 and switch 2 in Sos-catalyzed guanine nucleotide exchange. J. Biol. Chem. 276, 27629-27637.

    PubMed  CAS  Google Scholar 

  • Hall, B.E., Bar-Sagi, D. and Nassar, N. (2002) The structural basis for the transition from Ras-GTP to Ras-GDP. Proc. Natl. Acad. Sci. U.S.A. 99, 12138-12142.

    PubMed  CAS  Google Scholar 

  • Herrmann, C. (2003) Ras–effector interactions: after one decade. Curr. Opin. Struct. Biol. 13, 122-129.

    PubMed  CAS  Google Scholar 

  • Herrmann, C., Martin, G.A. and Wittinghofer, A. (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270, 2901-2905.

    PubMed  CAS  Google Scholar 

  • Herrmann, C., Horn, G., Spaargaren, M. and Wittinghofer, A. (1996) Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R.-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271, 6794-6800.

    PubMed  CAS  Google Scholar 

  • Hu, J.S. and Redfield, A.G. (1997) Conformational and dynamic differences between N-ras P21 bound to GTPgammaS and to GMPPNP as studied by NMR. Biochemistry 36, 5045-5052.

    PubMed  CAS  Google Scholar 

  • Huang, L., Weng, X., Hofer, F., Martin, G.S. and Kim, S.H. (1997) Three-dimensional structure of the Ras-interacting domain of RalGDS. Nat. Struct. Biol. 4, 609-615.

    PubMed  CAS  Google Scholar 

  • Huang, L., Hofer, F., Martin, G.S. and Kim, S.H. (1998) Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5, 422-426.

    PubMed  CAS  Google Scholar 

  • Ito, Y., Yamasaki, K., Iwahara, J., Terada, T., Kamiya, A., Shirouzu, M., Muto, Y., Kawai, G., Yokoyama, S., Laue, E.D., Walchli, M., Shibata, T., Nishimura, S. and Miyazawa, T. (1997) Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein. Biochemistry 36, 9109-9119.

    PubMed  CAS  Google Scholar 

  • Jancarik, J., de Vos, A., Kim, S.H., Miura, K., Ohtsuka, E., Noguchi, S. and Nishimura, S. (1988) Crystallization of human c-H-ras oncogene products. J. Mol. Biol. 200, 205-207.

    PubMed  CAS  Google Scholar 

  • John, J., Schlichting, I., Schiltz, E., Rosch, P. and Wittinghofer, A. (1989) C-terminal truncation of p21H preserves crucial kinetic and structural properties. J. Biol. Chem. 264, 13086-13092.

    PubMed  CAS  Google Scholar 

  • John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A. and Goody, R.S. (1990) Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29, 6058-6065.

    PubMed  CAS  Google Scholar 

  • John, J., Rensland, H., Schlichting, I., Vetter, I., Borasio, G.D., Goody, R.S. and Wittinghofer, A. (1993) Kinetic and structural analysis of the Mg(2+)-binding site of the guanine nucleotide-binding protein p21H-ras. J. Biol. Chem. 268, 923-929.

    PubMed  CAS  Google Scholar 

  • Kigawa, T., Endo, M., Ito, Y., Shirouzu, M., Kikuchi, A. and Yokoyama, S. (1998) Solution structure of the Ras-binding domain of RGL. FEBS Lett. 441, 413-418.

    PubMed  CAS  Google Scholar 

  • Kigawa, T., Yamaguchi-Nunokawa, E., Kodama, K., Matsuda, T., Yabuki, T., Matsuda, N., Ishitani, R., Nureki, O. and Yokoyama, S. (2002) Selenomethionine incorporation into a protein by cell-free synthesis. J. Struct. Funct. Genomics 2, 29-35.

    PubMed  CAS  Google Scholar 

  • Klose, A., Ahmadian, M.R., Schuelke, M., Scheffzek, K., Hoffmeyer, S., Gewies, A., Schmitz, F., Kaufmann, D., Peters, H., Wittinghofer, A. and Nurnberg, P. (1998) Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Hum. Mol. Genet. 7, 1261-1268.

    PubMed  CAS  Google Scholar 

  • Kraulis, P.J., Domaille, P.J., Campbell-Burk, S.L., Van Aken, T. and Laue, E.D. (1994) Solution structure and dynamics of ras p21.GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy. Biochemistry 33, 3515-3531.

    PubMed  CAS  Google Scholar 

  • Krengel, U., Schlichting, L., Scherer, A., Schumann, R., Frech, M., John, J., Kabsch, W., Pai, E.F. and Wittinghofer, A. (1990) Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62, 539-548.

    PubMed  CAS  Google Scholar 

  • Lenzen, C., Cool, R.H., Prinz, H., Kuhlmann, J. and Wittinghofer, A. (1998) Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm. Biochemistry 37, 7420-7430.

    PubMed  CAS  Google Scholar 

  • Margarit, S.M., Sondermann, H., Hall, B.E., Nagar, B., Hoelz, A., Pirruccello, M., Bar-Sagi, D. and Kuriyan, J. (2003) Structural evidence for feedback activation by Ras. GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685-695.

    PubMed  CAS  Google Scholar 

  • Martegani, E., Vanoni, M., Zippel, R., Coccetti, P., Brambilla, R., Ferrari, C., Sturani, E. and Alberghina, L. (1992) Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J. 11, 2151-2157.

    PubMed  CAS  Google Scholar 

  • Martin, G.A., Viskochil, D., Bollag, G., McCabe, P.C., Crosier, W.J., Haubruck, H., Conroy, L., Clark, R., O’Connell, P., Cawthon, R.M., Innis, M.A. and McCormick, F. (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63, 843-849.

    PubMed  CAS  Google Scholar 

  • McCormick, F. (1998) Going for the GAP. Curr. Biol. 8, R673-R674.

    PubMed  CAS  Google Scholar 

  • Menetrey, J. and Cherfils, J. (1999) Structure of the small G protein Rap2 in a non-catalytic complex with GTP. Proteins 37, 465-473.

    PubMed  CAS  Google Scholar 

  • Milburn, M.V. and Tong, L. deVos, A.M., Brunger, A., Yamaizumi, Z., Nishimura, S. and Kim, S.H. (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939-945.

    PubMed  CAS  Google Scholar 

  • Mistou, M.Y., Jacquet, E., Poullet, P., Rensland, H., Gideon, P., Schlichting, I., Wittinghofer, A. and Parmeggiani, A. (1992) Mutations of Ha-ras p21 that define important regions for the molecular mechanism of the SDC25 C-domain, a guanine nucleotide dissociation stimulator. EMBO J. 11, 2391-2397.

    PubMed  CAS  Google Scholar 

  • Mittal, R., Ahmadian, M.R., Goody, R.S. and Wittinghofer, A. (1996) Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115-117.

    PubMed  CAS  Google Scholar 

  • Moodie, S.A., Willumsen, B.M., Weber, M.J. and Wolfman, A. (1993) Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658-1661.

    PubMed  CAS  Google Scholar 

  • Mori, K., Hata, M., Neya, S. and Hoshino, T. (2002) A study on the role of Mg2+ in a Ras protein by MD simulation, {Chem.-Bio Inform.} J. 2 (4), 147-155.

    Google Scholar 

  • Morikawa, K., Tsujimoto, M., Higashi, T., Matsumoto, O., Miura, K., Ohtsuka, E., Noguchi, S. and Nishimura, S. (1988) Crystallization and preliminary crystallographic data of a truncated derivative from the human c-Ha-ras protein. J. Mol. Biol. 201, 237-238.

    PubMed  CAS  Google Scholar 

  • Mott, H.R., Carpenter, J.W., Zhong, S., Ghosh, S., Bell, R.M. and Campbell, S.L. (1996) The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Proc. Natl. Acad. Sci. U.S.A. 93, 8312-8317.

    PubMed  CAS  Google Scholar 

  • Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F. and Wittinghofer, A. (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554-560.

    PubMed  CAS  Google Scholar 

  • Nassar, N., Horn, G., Herrmann, C., Block, C., Janknecht, R. and Wittinghofer, A. (1996) Ras/Rap effector specificity determined by charge reversal. Nat. Struct. Biol. 3, 723-729.

    PubMed  CAS  Google Scholar 

  • Pacold, M.E., Suire, S., Perisic, O., Lara-Gonzalez, S., Davis, C.T., Walker, E.H., Hawkins, P.T., Stephens, L., Eccleston, J.F. and Williams, R.L. (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103, 931-943.

    PubMed  CAS  Google Scholar 

  • Pai, E.F., Kabsch, W., Krengel, U., Holmes, K.C., John, J. and Wittinghofer, A. (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209-214.

    PubMed  CAS  Google Scholar 

  • Pai, E.F., Krengel, U., Petsko, G.A., Goody, R.S., Kabsch, W. and Wittinghofer, A. (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution. implications for the mechanism of GTP hydrolysis. EMBO J. 9, 2351-2359.

    PubMed  CAS  Google Scholar 

  • Pan, J.Y., Wessling-Resnick, M. (1998) GEF-mediated GDP/GTP exchange by monomeric GTPases: a regulatory role for Mg2+? Bioessays, June;20(6):516-521.

    CAS  Google Scholar 

  • Phillips, R.A., Hunter, J.L., Eccleston, J.F. and Webb, M.R. (2003) The mechanism of Ras GTPase activation by neurofibromin. Biochemistry 42, 3956-3965.

    PubMed  CAS  Google Scholar 

  • Polakis, P. and McCormick, F. (1993) Structural requirements for the interaction of p21ras with GAP, exchange factors, and its biological effector target. J. Biol. Chem. 268, 9157-9160.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Viciana, P., Warne, P.H., Khwaja, A., Marte, B.M., Pappin, D., Das, P., Waterfield, M.D., Ridley, A., Downward, J. (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell. May 2;89(3):457-467.

    CAS  Google Scholar 

  • Saraste, M., Sibbald, P.R. and Wittinghofer, A. (1990) The P-loop – a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430-434.

    PubMed  Google Scholar 

  • Scheffzek, K., Lautwein, A., Kabsch, W., Ahmadian, M.R. and Wittinghofer, A. (1996) Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature 384, 591-596.

    PubMed  CAS  Google Scholar 

  • Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. and Wittinghofer, A. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338.

    PubMed  CAS  Google Scholar 

  • Scheffzek, K., Ahmadian, M.R. and Wittinghofer, A. (1998b) GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257-262.

    CAS  Google Scholar 

  • Scheffzek, K., Ahmadian, M.R., Wiesmuller, L., Kabsch, W., Stege, P., Schmitz, F. and Wittinghofer, A. (1998b) Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J. 17, 4313-4327.

    CAS  Google Scholar 

  • Scheffzek, K., Grunewald, P., Wohlgemuth, S., Kabsch, W., Tu, H., Wigler, M., Wittinghofer, A. and Herrmann, C. (2001) The Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast. Structure 9, 1043-1050.

    PubMed  CAS  Google Scholar 

  • Scheidig, A.J., Sanchez-Llorente, A., Lautwein, A., Pai, E.F., Corrie, J.E., Reid, G.P., Wittinghofer, A. and Goody, R.S. (1994) Crystallographic studies on p21(H-ras) using the synchrotron Laue method: improvement of crystal quality and monitoring of the GTPase reaction at different time points. Acta Crystallogr. D. Biol. Crystallogr. 50, 512-520.

    PubMed  CAS  Google Scholar 

  • Scheidig, A.J., Franken, S.M., Corrie, J.E., Reid, G.P., Wittinghofer, A., Pai, E.F. and Goody, R.S. (1995) X-ray crystal structure analysis of the catalytic domain of the oncogene product p21H-ras complexed with caged GTP and mant dGppNHp. J. Mol. Biol. 253, 132-150.

    PubMed  CAS  Google Scholar 

  • Scheidig, A.J., Burmester, C. and Goody, R.S. (1999) The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure 7, 1311-1324.

    PubMed  CAS  Google Scholar 

  • Scherer, A., John, J., Linke, R., Goody, R.S., Wittinghofer, A., Pai, E.F. and Homes, K.C. (1989) Crystallization and preliminary X-ray analysis of the human c-H-ras-oncogene product p21 complexed with GTP analogues. J. Mol. Biol. 206, 257-259.

    PubMed  CAS  Google Scholar 

  • Schlichting, I., Rapp, G., John, J., Wittinghofer, A., Pai, E.F. and Goody, R.S. (1989) Biochemical and crystallographic characterization of a complex of c-Ha-ras p21 and caged GTP with flash photolysis. ProceedingsNatl. Acad. Sci. U.S.A. 86, 7687-7690.

    CAS  Google Scholar 

  • Schlichting, I., Almo, S.C., Rapp, G., Wilson, K., Petratos, K., Lentfer, A., Wittinghofer, A., Kabsch, W., Pai, E.F., Petsko, G.A. and Good, R.S. (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis. Nature 345, 309-315.

    PubMed  CAS  Google Scholar 

  • Schmidt, G., Lenzen, C., Simon, I., Deuter, R., Cool, R.H., Goody, R.S. and Wittinghofer, A. (1996) Biochemical and biological consequences of changing the specificity of p21ras from guanosine to xanthosine nucleotides. Oncogene 12, 87-96.

    PubMed  CAS  Google Scholar 

  • Schweins, T. and Wittinghofer, A. (1994) GTP-binding proteins. Structures, interactions and relationships. Curr. Biol. 4, 547-550.

    PubMed  CAS  Google Scholar 

  • Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H.R. and Wittinghofer, A. (1995) Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat. Struct. Biol. 2, 36-44.

    PubMed  CAS  Google Scholar 

  • Schweins, T. and Warshel, A. (1996) Mechanistic analysis of the observed linear free energy relationships in p21ras and related systems. Biochemistry 35, 14232-14243.

    PubMed  CAS  Google Scholar 

  • Schweins, T., Scheffzek, K., Assheuer, R. and Wittinghofer, A. (1997) The role of the metal ion in the p21ras catalysed GTP-hydrolysis: Mn2 + versus Mg2 +. J. Mol. Biol. 266, 847-856.

    PubMed  CAS  Google Scholar 

  • Sigal, I.S., Gibbs, J.B., D’Alonzo, J.S., Temeles, G.L., Wolanski, B.S., Socher, S.H. and Scolnick, E.M. (1986) Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc. Natl. Acad. Sci. U.S.A. 83, 952-956.

    PubMed  CAS  Google Scholar 

  • Spoerner, M., Herrmann, C., Vetter, I.R., Kalbitzer, H.R. and Wittinghofer, A. (2001) Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc. Natl. Acad. Sci. U.S.A. 98, 4944-4949.

    PubMed  CAS  Google Scholar 

  • Sprang, S.R. (1997) G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639-678.

    PubMed  CAS  Google Scholar 

  • Sprang, S.R. (1997) G proteins, effectors and GAPs: structure and mechanism. Curr. Opin. Struct. Biol. 7, 849-856.

    PubMed  CAS  Google Scholar 

  • Sprang, S.R. (2000) Conformational display: a role for switch polymorphism in the superfamily of regulatory GTPases, {Sci. STKE} 2000, PE1.

    Google Scholar 

  • Stork, P.J. (2003) Does Rap1 deserve a bad Rap? Trends Biochem. Sci. 28, 267-275.

    PubMed  CAS  Google Scholar 

  • Terada, T., Ito, Y., Shirouzu, M., Tateno, M., Hashimoto, K., Kigawa, T., Ebisuzaki, T., Takio, K., Shibata, T., Yokoyama, S., Smith, B.O., Laue, E.D. and Cooper, J.A. (1999) Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins. J. Mol. Biol. 286, 219-232.

    PubMed  CAS  Google Scholar 

  • Tong, L.A., de Vos, A.M., Milburn, M.V. and Kim, S.H. (1991) Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol. 217, 503-516.

    PubMed  CAS  Google Scholar 

  • Trahey, M. and McCormick, F. (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238, 542-545.

    PubMed  CAS  Google Scholar 

  • Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G.A., Ladner, M., Long, C.M., Crosier, W.J., Watt, K., Koths, K. and McCormick, F. (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242, 1697-1700.

    PubMed  CAS  Google Scholar 

  • Vetter, I.R. and Wittinghofer, A. (2001) The guanine nucleotide-binding switch in three dimensions. Science 294, 1299-1304.

    PubMed  CAS  Google Scholar 

  • Via, A., Ferre, F., Brannetti, B., Valencia, A. and Helmer-Citterich, M. (2000) Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution. J. Mol. Biol. 303, 455-465.

    PubMed  CAS  Google Scholar 

  • Vogel, U.S., Dixon, R.A., Schaber, M.D., Diehl, R.E., Marshall, M.S., Scolnick, E.M., Sigal, I.S. and Gibbs, J.B. (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335, 90-93.

    PubMed  CAS  Google Scholar 

  • Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P. and Williams, R.L. (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909-919.

    PubMed  CAS  Google Scholar 

  • Warne, P.H., Viciana, P.R. and Downward, J. (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352-355.

    PubMed  CAS  Google Scholar 

  • Wittinghofer, A. (2003) Structural Considerations of Small GTP-Binding Proteins. In: Handbook of Cell Signaling, 1st edn. Elsevier Science (USA), pp. 757-761.

    Google Scholar 

  • Wittinghofer, A. and Pai, E.F. (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem. Sci. 16, 382-387.

    PubMed  CAS  Google Scholar 

  • Wittinghofer, A. and Waldmann, H. (2000) Ras, a molecular switch involved in tumor formation. Angew. Chem. 39, 4192-4214.

    CAS  Google Scholar 

  • Wittinghofer, A., Franken, S.M., Scheidig, A.J., Rensland, H., Lautwein, A., Pai, E.F. and Goody, R.S. (1993) Three-dimensional structure and properties of wild-type and mutant H-ras-encoded p21. Ciba Found. Symp. 176, 6-21.

    PubMed  CAS  Google Scholar 

  • Wittinghofer, A., Scheffzek, K. and Ahmadian, M.R. (1997) The interaction of Ras with GTPase-activating proteins. FEBS Lett. 410, 63-67.

    PubMed  CAS  Google Scholar 

  • Xu, G., O’Connel, P., Viskochil, D., Cawthon, R., Robertson, M., Culver, M., Dunn, D., Stevens, J., Gesteland, R., White, R. and Weiss, R. (1990a) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62, 599-608.

    CAS  Google Scholar 

  • Xu, G.F., Lin, B., Tanaka, K., Dunn, D., Wood, D., Gesteland, R., White, R., Weiss, R. and Tamanoi, F. (1990b) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63, 835-841.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Fiegen, D., Dvorsky, R., Ahmadian, M.R. (2006). Structural Principles of Ras Interaction with Regulators and Effectors. In: Der, C. (eds) RAS Family GTPases. Proteins and Cell Regulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4708-8_3

Download citation

Publish with us

Policies and ethics