Skip to main content

Genetically Engineered Mice Harboring RAS Mutations as Models of Human Cancer: in Medias RAS

  • Chapter
RAS Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 4))

  • 719 Accesses

Abstract

The molecular and histopathological consequences of expressing a mutated ras gene have been the focus of intense studies for the past 30 years. Initially, introducing H-ras mutations as transgenes under the control of a heterologous promoter was shown to cause neoplastic changes where expressed, proving in-vivo the relevance of ras mutations to cancer. Lesions usually developed after a long latent period, and the additional mutation of tumor suppressor genes (such as p53) resulted in a more aggressive phenotype. In an attempt to better mimic genetic lesions found in human cancer, more recent studies have used the Cre-Lox recombination system to tissue-specific directed mutations in the endogenous K-ras allele. When expressed in the lungs, mice develop lesions that include hyperplasias, adenomas, invasive carcinomas, and occasionally metastatic lesions. When expressed in the pancreas, early pancreatic intraepithelial neoplastic lesions (PanIN) are induced, with progression of histological atypia that appears indistinguishable from human disease. Moreover, when crossed to a conditional Ink4a/ARF background (as is frequently found in human pancreatic adenocarcinoma), animals succumb to both local and distant disease within 12 weeks. Similarly, when the endogenous K-rasis mutated in hematopoietic cells, all mice die from a myeloproliferative disorder. By faithfully recapitulating both the genetic and pathophysiology of the cognate human malignancy, these models provide a means to dissect the relevant molecular pathways leading to cancer susceptibility, formation and progression; and to design and test prevention, early detection, and treatment strategies for human cancers that are driven by ras mutations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguirre, A.J., Bardeesy, N. et al. (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17 (24), 3112-3126.

    Article  PubMed  CAS  Google Scholar 

  • Anton, M. and Graham, F.L. (1995) Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J. Virol. 69 (8), 4600-4606.

    PubMed  CAS  Google Scholar 

  • Babinet, C. (2000) Transgenic mice: an irreplaceable tool for the study of mammalian development and biology. J. Am. Soc. Nephrol. 11 (Suppl. 16), S88-S94.

    PubMed  CAS  Google Scholar 

  • Bailleul, B., Surani, M.A. et al. (1990) Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 62 (4), 697-708.

    Article  PubMed  CAS  Google Scholar 

  • Balmain, A., Ramsden, M. et al. (1984) Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307 (5952), 658-660.

    Article  PubMed  CAS  Google Scholar 

  • Bos, J.L. (1989) ras oncogenes in human cancer: a review. Cancer Res. 49 (17), 4682-4689.

    PubMed  CAS  Google Scholar 

  • Braun, B.S., Tuveson, D.A. et al. (2004) Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl. Acad. Sci. U.S.A. 101 (2), 597-602.

    Article  PubMed  CAS  Google Scholar 

  • Brembeck, F.H., Schreiber, F.S. et al. (2003) The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res. 63 (9), 2005-2009.

    PubMed  CAS  Google Scholar 

  • Chan, I.T., Kutok, J.L. et al. (2004) Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest. 113 (4), 528-538.

    PubMed  CAS  Google Scholar 

  • Chin, L., Pomerantz, J. et al. (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11 (21), 2822-2834.

    Article  PubMed  CAS  Google Scholar 

  • Chin, L., Tam, A. et al. (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400 (6743), 468-472.

    Article  PubMed  CAS  Google Scholar 

  • Chrast-Balz, J. and Hooft van Huijsduijnen, R. (1996) Bi-directional gene switching with the tetracycline repressor and a novel tetracycline antagonist. Nucleic Acids Res. 24 (15), 2900-2904.

    Article  PubMed  CAS  Google Scholar 

  • D’Cruz, C.M., Gunther, E.J. et al. (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat. Med. 7 (2), 235-239.

    Article  PubMed  Google Scholar 

  • DeWille, J.W., Waddell, K. et al. (1993) Dietary fat promotes mammary tumorigenesis in MMTV/v-Ha-ras transgenic mice. Cancer Lett. 69 (1), 59-66.

    Article  PubMed  CAS  Google Scholar 

  • Ding, H., Roncari, L. et al. (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 61 (9), 3826-3836.

    PubMed  CAS  Google Scholar 

  • Ding, H., Shannon, P. et al. (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res. 63 (5), 1106-1113.

    PubMed  CAS  Google Scholar 

  • Esteban, L.M., Vicario-Abejon, C. et al. (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol. Cell. Biol. 21 (5), 1444-1452.

    CAS  Google Scholar 

  • Fearon, E.R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell 61 (5), 759-767.

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, G., Chandrasekar, B. et al. (1995) Dietary lipids and calorie restriction affect mammary tumor incidence and gene expression in mouse mammary tumor virus/v-Ha-ras transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 92 (14), 6494-6498.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, G.H., Wellen, S.L. et al. (2001) Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev. 15 (24), 3249-3262.

    Article  PubMed  CAS  Google Scholar 

  • Furth, P.A., St Onge, L. et al. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. U.S.A. 91 (20), 9302-9306.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, S.B., Park, H.S. et al. (1999) Field cancerization, clonality, and epithelial stem cells: the spread of mutated clones in epithelial sheets. J. Pathol. 187 (1), 61-81.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, J.B. and Oliff, A. (1997) The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu. Rev. Pharmacol. Toxicol. 37, 143-166.

    Article  PubMed  CAS  Google Scholar 

  • Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89 (12), 5547-5551.

    Article  PubMed  CAS  Google Scholar 

  • Gossen, M. and Bujard, H. (1993) Anhydrotetracycline, a novel effector for tetracycline controlled gene expression systems in eukaryotic cells. Nucleic Acids Res. 21 (18), 4411-4412.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh, D.A., Rothnagel, J.A. et al. (1993) Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by a targeted v-Ha-ras oncogene. Mol. Carcinog. 7 (2), 99-110.

    Article  PubMed  CAS  Google Scholar 

  • Grippo, P.J., Nowlin, P.S. et al. (2003) Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice. Cancer Res. 63 (9), 2016-2019.

    PubMed  CAS  Google Scholar 

  • Guerra, C., Mijimolle, N. et al. (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4 (2), 111-120.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D. (1988) Dissecting multistep tumorigenesis in transgenic mice. Annu. Rev. Genet. 22, 479-519.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100 (1), 57-70.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, J.F., Magee, A.I. et al. (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57 (7), 1167-1177.

    Article  PubMed  CAS  Google Scholar 

  • Hingorani, S.R., Petricoin, E.F. et al. (2004) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 5 (1), 103.

    Article  CAS  Google Scholar 

  • Holland, E.C., Celestino, J. et al. (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25 (1), 55-57.

    Article  PubMed  CAS  Google Scholar 

  • Hundley, J.E., Koester, S.K. et al. (1997) Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol. Cell. Biol. 17 (2), 723-731.

    PubMed  CAS  Google Scholar 

  • Jackson, E.L., Willis, N. et al. (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15 (24), 3243-3248.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, K.P., el-Marjou, F. et al. (2002) Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology 123 (2), 492-504.

    Article  PubMed  CAS  Google Scholar 

  • Jo, D., Nashabi, A. et al. (2001) Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase [Comment]. Nat. Biotechnol. 19 (10), 929-933.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L., Mercer, K. et al. (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410 (6832), 1111-1116.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, K.M. (2001) Pulmonary preinvasive neoplasia. J. Clin. Pathol. 54 (4), 257-271.

    Article  PubMed  CAS  Google Scholar 

  • Khosravi-Far, R. and Der, C.J. (1994) The Ras signal transduction pathway. Cancer Metastasis Rev. 13 (1), 67-89.

    Article  PubMed  CAS  Google Scholar 

  • Kilby, N.J., Snaith, M.R. et al. (1993) Site-specific recombinases: tools for genome engineering. Trends Genet. 9 (12), 413-421.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.H., Roth, K.A. et al. (1993) Transgenic mouse models that explore the multistep hypothesis of intestinal neoplasia. J. Cell Biol. 123 (4), 877-893.

    Article  PubMed  CAS  Google Scholar 

  • Kinzler, K.W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87 (2), 159-170.

    Article  PubMed  CAS  Google Scholar 

  • Kistner, A., Gossen, M. et al. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93 (20), 10933-10938.

    Article  PubMed  CAS  Google Scholar 

  • Knudson, A.G. (1993) Antioncogenes and human cancer. Proc. Natl. Acad. Sci. U.S.A. 90 (23), 10914-10921.

    Article  PubMed  CAS  Google Scholar 

  • Kohl, N.E., Omer, C.A. et al. (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat. Med. 1 (8), 792-797.

    Article  PubMed  CAS  Google Scholar 

  • Kucera, G.T., Bortner, D.M. et al. (1996) Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants. Dev. Biol. 173 (1), 162-173.

    Article  PubMed  CAS  Google Scholar 

  • Lakso, M., Sauer, B. et al. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 89 (14), 6232-6236.

    Article  PubMed  CAS  Google Scholar 

  • Land, H., Parada, L.F. et al. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304 (5927), 596-602.

    Article  PubMed  CAS  Google Scholar 

  • Le, Y. and Sauer, B. (2001) Conditional gene knockout using Cre recombinase. Mol. Biotechnol. 17 (3), 269-275.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., Bryant, M.S. et al. (1998) Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res. 58 (21), 4947-4956.

    PubMed  CAS  Google Scholar 

  • Magee, T. and Marshall, C. (1999) New insights into the interaction of Ras with the plasma membrane. Cell 98 (1), 9-12.

    Article  PubMed  CAS  Google Scholar 

  • Mangues, R., Corral, T. et al. (1998) Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res. 58 (6), 1253-1259.

    PubMed  CAS  Google Scholar 

  • Maronpot, R.R., Palmiter, R.D. et al. (1991) Pulmonary carcinogenesis in transgenic mice. Exp. Lung Res. 17 (2), 305-320.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, D. and Chambon, P. (2001) Site- and time-specific gene targeting in the mouse. Methods 24 (1), 71-80.

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen, R., Linn, S.C. et al. (2001) Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene 20 (45), 6551-6558.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, L.L., Gurnani, M. et al. (1992) Evaluation of the wap-ras transgenic mouse as a model system for testing anticancer drugs. Cancer Res. 52 (13), 3733-3738.

    PubMed  CAS  Google Scholar 

  • Orsulic, S., Li, Y. et al. (2002) Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1 (1), 53-62.

    Article  PubMed  CAS  Google Scholar 

  • Ota, T., Asamoto, M. et al. (2000) Transgenic rats carrying copies of the human c-Ha-ras proto-oncogene exhibit enhanced susceptibility to N-butyl-N-(4-hydroxybutyl) nitrosamine bladder carcinogenesis. Carcinogenesis 21 (7), 1391-1396.

    Article  PubMed  CAS  Google Scholar 

  • Quaife, C.J., Pinkert, C.A. et al. (1987) Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 48 (6), 1023-1034.

    Article  PubMed  CAS  Google Scholar 

  • Sadowski, P.D. (1995) The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog. Nucleic Acid Res. Mol. Biol. 51, 53-91.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, A., Kimura, M. et al. (1990) Most tumors in transgenic mice with human c-Ha-ras gene contained somatically activated transgenes. Oncogene 5 (8), 1195-1200.

    PubMed  CAS  Google Scholar 

  • Sauer, B. (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14 (4), 381-392.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, M., Lin, A.W. et al. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88 (5), 593-602.

    Article  PubMed  CAS  Google Scholar 

  • Sinn, E., Muller, W. et al. (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49 (4), 465-475.

    Article  PubMed  CAS  Google Scholar 

  • Suda, Y., Aizawa, S. et al. (1987) Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO J. 6 (13), 4055-4065.

    PubMed  CAS  Google Scholar 

  • Tarutani, M., Cai, T. et al. (2003) Inducible activation of Ras and Raf in adult epidermis. Cancer Res. 63 (2), 319-323.

    PubMed  CAS  Google Scholar 

  • Thomas, K.R. and Capecchi, M.R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51 (3), 503-512.

    Article  PubMed  CAS  Google Scholar 

  • Tuveson, D.A. and Jacks, T. (1999) Modeling human lung cancer in mice: similarities and shortcomings. Oncogene 18 (38), 5318-5324.

    Article  PubMed  CAS  Google Scholar 

  • Uhrbom, L., Dai, C. et al. (2002) Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62 (19), 5551-5558.

    PubMed  CAS  Google Scholar 

  • Umemura, T., Kodama, Y. et al. (1999) Susceptibility to urethane carcinogenesis of transgenic mice carrying a human prototype c-Ha-ras gene (rasH2 mice) and its modification by butylhydroxytoluene. Cancer Lett. 145 (1–2), 101-106.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Krushel, L.A. et al. (1996) Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene. Proc. Natl. Acad. Sci. U.S.A. 93 (9), 3932-3936.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Wang, Y. et al. (2001) Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nat. Genet. 29 (1), 25-33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Zaks, T.Z., Jacobetz, M.A., Tuveson, D.A. (2006). Genetically Engineered Mice Harboring RAS Mutations as Models of Human Cancer: in Medias RAS. In: Der, C. (eds) RAS Family GTPases. Proteins and Cell Regulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4708-8_12

Download citation

Publish with us

Policies and ethics