Skip to main content

Seasonal variations of cystoseira barbata (stackhouse) C. Agardh frond architecture

  • Chapter
Marine Biodiversity

Part of the book series: Developments in Hydrobiology ((DIHY,volume 183))

Abstract

The practical assessment of the biogenic structural complexity poses some problems in non-symmetrical or three-dimensional macroalgae. This study represents the first attempt to measure quantitatively the phenology and the plasticity of Cystoseira barbata (Stackhouse) C. Agardh in the Mediterranean Sea. This canopy-forming brown alga is characterised by a ramified monopodial cauloid and a dendroid frond. To analyse the morphological-spatial changes in time and the plasticity of C. barbata an experiment was conducted in a protected sea area of the Northern Adriatic Sea on thalli taken from a natural population and a transplanted one, re-located in deeper water. The three-dimensional complexity of thalli and the frond architecture were analysed by means of quantitative structural (total area, perimeter) and spatial (intercepting area, volume and interstitial area) attributes. A preliminary assessment of the primary production of the basiphyite-epiphyte system was investigated by a volumetric analysis. The thalli showed a seasonal pattern characterised by a marked phenological variation of the fronds, both in size and in shape. The seasonal trend was comparable in the both populations studied, with fronds largest in spring—summer, whereas the fall of phylloids and branchelets occurs in autumn—winter. Also the abundance of algal epibionts on the host varied seasonably and depended mainly on the life-form of Cystoseira fronds, where complex fronds encouraged more abundant associated epibionts. The morphological variability of different individuals was also investigated using some bio-structural indices. These indices were proposed as useful for a more detailed description of the phenology of C. barbata and for a better evaluation of the potential micro-spatial and structural habitat available inside the fronds. The proposed protocol and the quantitative descriptors analysed may be employed in physiological or ecological studies, being useful for a standardisable classification of a habitat’s complexity. The analysed spatial and structural attributes, as well as the definition of the complexity of C. barbata, enable the evaluation of the area available for the attachment and shelter of epibionts together with the number and type of potential habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarnio, K. & J. Mattila, 2000. Predation by juvenile Platichthys flesus (L.) on shelled prey species in a bare sand and a drift algae habitat. Hydrobiologia 440: 347–355.

    Article  Google Scholar 

  • Austin, R. F., 1984. Measuring and comparing two-dimensional shapes. In Gaile, G. L. & C. J. Willmott (eds.) Spatial Statics and Models. Reidel Publ. Co, Boston: 293–312.

    Google Scholar 

  • Benedetti-Cecchi, L., F. Pannacciulli, F. Bulleri, P. S. Morchella, L. Airoldi, G. Relini & F. Cinelli, 2001. Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Marine Ecology Progress Series 214: 137–150.

    Google Scholar 

  • Boudouresque, C. F., 1971. Contribution à l’étude phytosociologique des peuplements algaux des cô tes varoises. Vegetation 22: 83–184.

    Article  Google Scholar 

  • Bortone, S. A., M. A. Samoilys & P. Francour, 2000. Fish and Macroinvertebrates Evaluation Methods. In Seaman W. J. (ed.), Artificial Reef Evalution with Application to Natural Marine Habitats. CRC Marine Science Press: 128–159.

    Google Scholar 

  • Bulleri, F., L. Benedetti-Cecchi, S. Acunto, F. Cinelli & S. J. Hawkins, 2002. The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. Journal of Experimental Marine Biology and Ecology 267: 89–106.

    Article  Google Scholar 

  • Chemello, R. & M. Milazzo, 2002. Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Marine Biology 140: 981–990.

    Article  Google Scholar 

  • Cormaci, M., Furnari, G., Giaccone, G., Scammacca, B. & Serio, D., 1992. Observation taxonomiques et biogéographiques sur quelques espèces du genre Cystoseira C. Agardh. Bulletin de l’Institut océanographique, Monaco 9: 21–35.

    Google Scholar 

  • Dean, R. L. & J. H. Connell, 1987a. Marine invertebrates in an algal succession. II. Tests of hypothesis to explain changes in diversity with succession. Journal of Experimental Marine Biology Ecology 109: 217–247.

    Article  Google Scholar 

  • Dean, R. L. & J. H. Connell, 1987b. Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. Journal of Experimental Marine Biology Ecology 109: 249–273.

    Article  Google Scholar 

  • Dudgeon, S. R., J. E. Kübler, R. L. Vadas & I. R. Davidson, 1995. Physiological responses to environmental variation in intertidal red algae: does thallus morphology matter?. Marine Ecology Progress Series 117: 193–206.

    Google Scholar 

  • Duggins, D. O., J. E. Eckman & A. T. Sewell, 1990. Ecology of understory kelp environment. 2. Effects of kelps on recruitment of benthic invertebrates. Journal of Experimental Marine Biology and Ecology 143: 27–45.

    Article  Google Scholar 

  • Edgar, G. J., 1983. The ecology of S. E. Tasmanian phytal animal communities. IV. Factors affecting the distribution of amphithoids among algae. Journal of Experimental Marine Biology and Ecology 70: 205–225.

    Article  Google Scholar 

  • Edgar, G. J., 1991. Artificial algae as habitat for mobile epifauna: factors affecting colonization in a Japanese Sargassum bed. Hydrobiologia 226: 111–118.

    Article  Google Scholar 

  • Falace A. & G. Bressan, 2003. Intervento pilota di restauro biologico mediante tecniche di traspianto algale. Biologia Marina Mediterranea 11(2): 499–503.

    Google Scholar 

  • Figueiredo, O. M. A., J. M. Kain & T. A. Norton, 2000. Responses of crustose corallines to epiphyte and canopy cover. Journal of Phycology 1: 17–24.

    Article  Google Scholar 

  • Gee, J. M. & R. M. Warwick, 1994. Body-size distribution in a marine metozoan community and the fractal dimensions of macroalgae. Journal of Experimental Marine Biology Ecology 178: 247–259.

    Article  Google Scholar 

  • Gibbons, M. J., 1988. The impact of sediment accumulations, relative habitat complexity and elevation on rocky shore meiofauna. Journal of Experimental Marine Biology Ecology 122: 225–241.

    Article  Google Scholar 

  • Gomez, A., M. A. Ribera & J. A. Seoane Camba, 1982. Estudio fenológico de varias especies del género Cystoseira en Mallorca. Collectanea Botanica 13: 841–855.

    Google Scholar 

  • Hacker, S. D. & R. S. Steneck, 1990. Habitat architecture and the abundance and body-size-dependent habitat selection of a phytal amphipod. Ecology 71 (6): 2269–2285.

    Article  Google Scholar 

  • Hawkins, S. J., 1983. Interaction of Patella and macroalgae with settling Balanus balanoides (L.). Journal of Experimental Marine Biology and Ecology 71: 55–72.

    Article  Google Scholar 

  • Hein, M., M. F. Pedersen & K. Sand-Jensen, 1995. Sizedependent nitrogen uptake in micro-and macroalgae. Marine Ecology Progress Series 164: 21–34.

    Google Scholar 

  • Hernández, I., J. R. Andrìa, M. Christmas& B. A. Whitton, 1999. Testing the allometric scaling of alkaline phosphatase activity to surface/volume ratio in benthic marine macrophytes. Journal of Experimental Marine Biology Ecology 241: 1–14.

    Article  Google Scholar 

  • Hernández-Carmona, G., O. García, D. Robledo & M. Foster, 2000. Restoration techniques for Macrocystis pyrifera (Phaeophyceae) populations at the Southern limit of their distribution in México. Botanica Marina 43: 273–284.

    Article  Google Scholar 

  • Hicks, G. R. F., 1980. Structure of phytal Harpacticoid Copepod assemblages and the influence of habitat complexity and turbidity. Journal of Experimental Marine Biology Ecology 44: 157–192.

    Article  Google Scholar 

  • Hull, S. L., 1997. Seasonal changes in diversity and abundance of ostracods on four species on intertidal algae with different structural complexity. Marine Ecology Progress Series 161: 71–82.

    Google Scholar 

  • Jacobi, C. L. & R. Langevin, 1996. Habitat geometry of benthic substrata: effects on arrival and settlement of mobile epifauna. Journal of Experimental Marine Biology Ecology 206: 39–54.

    Article  Google Scholar 

  • Jenkins, S. R., S. J. Hawkins & T. A. Norton, 1999. Interaction between a fucoid canopy and limpet grazing in structuring a low shore intertidal community. Journal of Experimental Marine Biology Ecology 233: 41–63.

    Article  Google Scholar 

  • Jones, C. G., J. H. Lawton & M. Shachak, 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.

    Article  Google Scholar 

  • Kennelly, S. J., 1989. Effects of kelp canopies on understory species due to shade and scour. Marine Ecology Progress Series 50: 215–224.

    Google Scholar 

  • Khailov, K. M. & Yu. K. Firsov, 1976. The relationships between weight, length, age and intensity of photosynthesis and organotrophy in the thallus of C. barbata from the Black Sea. Botanica Marina XIX: 329–334.

    Google Scholar 

  • Kübler, J. E. & S. R. Dudgeon, 1996. Temperature dependent change in the complexity of form of Chondrus crispus fonds. Journal of Experimental Marine Biology Ecology 207: 15–24.

    Article  Google Scholar 

  • McCook, L. J. & A. R. O. Chapman, 1991. Community structure following massive ice scour on an exposed rockyshore: effects of Fucus canopy algae and of mussels during late succession. Journal of Experimental Marine Biology and Ecology 154: 137–169.

    Article  Google Scholar 

  • Melville, A. J. & S. D. Connell, 2001. Experimental effects of kelp canopies on subtidal coralline algae. Australian Ecology 26: 102–108.

    Article  Google Scholar 

  • Menge, B. A., 1978. Predation intensity in a rocky intertidal community Relation between predator foraging activity and environment harshness. Oecologia 34: 1–16.

    Article  Google Scholar 

  • Menge, B. A. & J. P. Sutherland, 1987. Community regulation: variation in disturbance, competition, and predation to gradients of environmental stress and recruitment. American Naturalist 130: 730–757.

    Article  Google Scholar 

  • O’Connor, N. A., 1991. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 85: 504–512.

    Article  Google Scholar 

  • Otero-Schmitt, J. & J. L. Pérez-Cirera, 1996. Epiphytism on Cystoseira (Fucales, Phaeophyta) from the Atlantic Coast of Northwest Spain. Botanica Marina 39: 445–465.

    Google Scholar 

  • Paine, R. T., 1969. A note on trophic complexity and community stability. American Naturalist 103: 91–93.

    Article  Google Scholar 

  • Piraino, S., G. Fanelli & F. Boero, 2002. Variability of species’ roles in marine communities: change of paradigm for conservation priorities. Marine Biology 140: 1067–1074.

    Article  Google Scholar 

  • Stoner, A. W. & F. G. Lewis, 1985. The influence of quantitative and qualitative aspects of habitat complexity in tropical seagrass meadows. Journal of Experimental Marine Biology Ecology 94: 19–40.

    Article  Google Scholar 

  • Ralph, P. J., D. A. Morrison & A. Addison, 1998. A quantitative study of the patterns of morphological variation within Hormosira banksii (Turner) Decaisne (Fucales: Phaeophyta) in South-eastern Australia. Journal of Experimental Marine Biology Ecology 225: 285–300.

    Article  Google Scholar 

  • Reed, D. C. & M. S. Foster, 1984. The effect of canopy shading on algal recruitment and growth in a giant kelp forest. Ecology 65: 937–948.

    Article  Google Scholar 

  • Ribera, M. A., A. Gómez-Garreta, T. Gallardo, M. Cormaci, G. Furnari & G. Giaccone, 1992. Check-list of Mediterranean Seaweeds Fucophyceae I., (Warming, 1884). Botanica Marina 35: 109–130.

    Google Scholar 

  • Russo, A. R., 1997. Epifauna living on sublittoral seaweeds around Cyprus. Hydrobiologia 344: 169–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Falace, A., Bressan, G. (2006). Seasonal variations of cystoseira barbata (stackhouse) C. Agardh frond architecture. In: Martens, K., et al. Marine Biodiversity. Developments in Hydrobiology, vol 183. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4697-9_16

Download citation

Publish with us

Policies and ethics