Skip to main content

INTRINSICALLY INHOMOGENEOUS MAGNETIC STATES IN ANTIFERROMAGNETS

  • Conference paper
Smart Materials for Ranging Systems

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 226))

  • 405 Accesses

Abstract

This review outlines inhomogeneous states which appear in antiferromagnets in the vicinity of phase transitions. It will be shown on the basis of a thermodynamic analysis of experimental data that these states are similar to intermediate and mixed states in superconductors or to those in non-ferromagnetic metals under conditions of de Haas-van Alphen effect, and are determined by the sign of the surface energy of the interface between co-existent phases, independently of its origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.L. Dudko, (1971) Experimental evidence for existence of domain structure at the first order phase transition in antiferromagnetic crystals. - Thesis, Institute for Low Temperature Physics, Kharkov, 1971.

    Google Scholar 

  2. K.L. Dudko, V.V. Eremenko, and V.M. Fridman, Magnetic stratification during flipping of antiferromagnetic manganese fluoride sublattices. Sov. Phys.-JETP, 34, No. 2, 362-367 (1971)

    ADS  Google Scholar 

  3. K.L. Dudko, V.V. Eremenko, V.M. Fridman, Magnetization jumps and domain structure of manganise fluoride at sublattice spin-flopping. Sov. Phys.-JETP, 61, No 4, 1553-1563 (1971)

    Google Scholar 

  4. A.A. Galkin, S.N. Kovner, V.A. Popov, Antiferromagnetic resonance in CuCl2· 2H2O in inclined magnetic field near intermediate state. Phys. Stat. Sol. (b), 57, 485-495 (1973)

    Article  ADS  Google Scholar 

  5. A.R. King, D. Paquette, Spin-flop domains in MnF2. Phys. Rev. Lett., 30, No. 14, 662-666 (1973)

    Article  ADS  Google Scholar 

  6. A.A. Mil’ner, Yu.A. Popkov, V.V. Eremenko, Spectroscopic investigation of the intermediate state in antiferromagnetic MnF2. JETP Letters, 18, No 1, 20-22 (1973)

    ADS  Google Scholar 

  7. A.A. Mil’ner, Yu.A. Popkov, V.V. Eremenko, Spectroscopic study of intermediate state in antiferromagnetic MnF2. Sov. Phys.-JETP, 18, No 1, 39-42 (1973)

    Google Scholar 

  8. V.G. Bar’yachtar, A.A. Galkin, V.T. Telepa, Intermediate state in the region of sublattice spin-flopping in antiferromagnetic single crystal CuCl2· 2H2O. Fizika Nizkich Temperatur, 1, No 4, 483-485 (1975)

    Google Scholar 

  9. K.L. Dudko, V.V. Eremenko, and V.M. Fridman, Relaxation and hysteresis of magnetization of antiferromagnetic FeCO3. Sov. Phys.-JETP, 41, No. 6 1157- 1160 (1975);

    Google Scholar 

  10. V.M. Fridman, Investigation of antiferromagnetic-ferromagnetic state transition in FeCO3, induced by a magnetic field. Thesis, Institute for Low Temperature Physics, Kharkov, 1971.

    Google Scholar 

  11. N.F. Kharchenko, H. Szymczak, V.V. Eremenko, S.L. Gnatchenko, R. Szymczak, Magnetic intermediate state in disprosium orthferrite. Sov. Phys.-JETP Letters, 25, No 5, 258-262 (1977)

    Google Scholar 

  12. S.M. Rezende, A.R. King, R.M. White, J.P. Timble, Stability limit at the antiferromagnetic phase near spin-flop boundary in MnF2. Phys. Rev. B, 16, No 3, 1126-1131 (1977)

    Article  ADS  Google Scholar 

  13. N.V. Gapon, K.L. Dudko, Orientation phase transition and intermediate state in monoklinic antiferromagnet NiWO4 in longitudinal external field. Sov. Phys.- JETP, 77, No 4(10), 1528-1543 (1979)

    Google Scholar 

  14. V.V. Eremenko, A.V. Klochko, V.M. Naumenko, Antiferromagnetic resonance in the intermediate state of MnF2. Sov. Phys.-JETP Letters, 35, No 11, 479-481 (1982)

    Google Scholar 

  15. V.V. Eremenko, A.V. Klochko, V.M. Naumenko, V.V. Pishko, Antiferromagnetic resonance in the intermediate state of CuCl2· 2H2O. Sov. Phys.-JETP Letters, 40, No 6, 219-221 (1984)

    Google Scholar 

  16. V.V. Eremenko, A.V. Klochko, V.M. Naumenko, V.V. Pishko, Magnetic resonance in the intermediate state of CuCl2· 2H2O. Fizika Nizkich Temperatur, 11, No 3, 327-331 (1985)

    Google Scholar 

  17. V.V. Eremenko, A.V. Klochko, V.M. Naumenko, Investigation of intermediate state in MnF2 using antiferromagnetic resonance and Faradey effect. Sov. Phys.- JETP, 88, No 9, 1002-1017 (1985)

    Google Scholar 

  18. V.G. Bar’yachtar, A.E. Borovik, V.A. Popov, Theory of intermediate state in antiferromagnets at the first order phase transitions in external magnetic field. Sov. Phys.-JETP Letters, 9, 634-637 (1969)

    Google Scholar 

  19. V.G. Bar’yachtar, A.E. Borovik, V.A. Popov, E.L. Stefanovsky, About antiferromagnet domain structure, arising with the change of magnetic anisotropy. Sov. Phys.-JETP, 59, No 10, 1299-1306 (1970)

    Google Scholar 

  20. V.G. Bar’yachtar, A.E. Borovik, V.A. Popov, E.L. Stefanovsky, Domain wall vibrations in antiferromagnets. Sov. Phys. - Solid State physics, 12, No 11, 3289-3297 (1970)

    Google Scholar 

  21. V.G. Bar’yachtar, A.E. Borovik, V.A. Popov, Theory of intermediate state in antiferromagnets. Sov. Phys.-JETP, 62, No 3, 2233-2241 (1972)

    Google Scholar 

  22. L.V. Shubnikov, V.I. Khotkevich, Yu.D. Shepelev, Yu.N. Ryabinin, Dependence of magnetic induction of the stregth of external magnetic field for Pb9595-Tl5 alloy at different temperatures. Sov. JETPh, 77, 221-237 (1937); L.W. Schubnikov, W.I. Chotkewitsch, J.D. Schepelew, J.N. Rjabinin, Magnetische eigenschaften supraleitender Mrtalle und Legierungen. Phys.Z.Sow., 10, No. 2, s.165-169 (1936)

    Google Scholar 

  23. L.D. Landau, Theory of intermediate state. JETPh, 7, 371 (1937)

    Google Scholar 

  24. L.V. Shubnikov, I.E. Nakhutin, Electroconductivity of superconducting sphere in intermediate state. JETPh, 7, No. 4, 566 (1937); L.V. Schubnikov, I.E. Nakhutin, Superconductivity in intermediate state. JETPh, 8, No. 6, 713-716 (1938)

    Google Scholar 

  25. A.G. Meshkovskyj, A.I. Schalnikov, Scanning of intermediate state by Bi-wire JETPh, 17, 851-861 (1947)

    Google Scholar 

  26. A.A. Abrikosov, About magnetic properties of type 2 superconductors. JETPh, 32, 1442 (1957); A.A. Abrikosov, Dokladi Akademii Nauk SSSR, 86, 489-493 (1952)

    Google Scholar 

  27. N.V. Zavaritskij, Investigation of superconducting properties of Tl- and Sn films, condensed at low temperatures. Dokladi Akademii Nauk SSSR, 86, 501-505 (1952)

    Google Scholar 

  28. J.H. Condon, Nonlinear de Haas-van Alphen effect and Magnetic Domains in Beryllium, Phys.Rev. 145, 526-535 (1966)

    Article  ADS  Google Scholar 

  29. J.H. Condon, R.E. Walstedt, Direct evidence for magnetic domains in silver. Phys. Rev.Lett., 21, No. 9, 612-614 (1968)

    Article  ADS  Google Scholar 

  30. E.A. Turov, Physical properties of magnetically ordered crystals. Edition of The Academy of Sciences of USSR, Moscow, 1963.

    Google Scholar 

  31. J.S. Jacobs, Spin-flopping in MnF2 by high magnetic fields. J. Appl. Phys., 32, 61S-62S (1961)

    Article  Google Scholar 

  32. J.S. Jacobs, Metamagnetism of Siderite (FeCO3). J. Appl. Phys., 34, 1106-1107 (1963).

    Article  ADS  Google Scholar 

  33. V.I. Ozhogin, Antiferromagnets CoCO3, CoF2 , and FeCO3 in high fields. JETPh, 45, 1687-1693 (1963)

    Google Scholar 

  34. M.I. Kaganov, G.K. Chepurnikh Peculiarities of magnetization of uniaxial anti-ferromagnet near field of sublaatice flipping. 11, 911-917 (1969); M.I Kaganov, G.K. Chepurnikh About phase diagram of uniaxial antiferromagnet. 12, 2988-2992 (1970)

    Google Scholar 

  35. V.V. Eremenko, Introduction into optical spectroscopy of magnets. Kiev: Naukova Dumka, 1975, 469 p.

    Google Scholar 

  36. V.V. Eremenko, N.F. Kharchenko, Yu.G. Litvinenko, V.M. Naumenko, Magneto-optics and spectroscopy of antiferromagnets. Springer-Verlag, 1992, 276 p.

    Google Scholar 

  37. R.A. Alikhanov. Neutron study of antiferromagnetism in the carbonates of Mn and Fe. JETPh, 36, 1690-1696 (1959)

    Google Scholar 

  38. D.W. Forester, N.C. Koon, J. Appl. Phys., 40, 1316 (1969)

    Article  ADS  Google Scholar 

  39. Hang Nam Ok, Relaxation effects in antiferromagnetic ferrous carbonate. Phys. Rev., 185, 472-476 (1969)

    Article  Google Scholar 

  40. J.S. Jacobs, P.E. Lawrence, Metamagnetic phase transitions and Hysteresis in FeCl2. Phys. Rev. 164, 866-878 (1967)

    Article  ADS  Google Scholar 

  41. J.S. Jacobs, P.E. Lawrence, Metamagnetism and exchange in Ferrous Bromide. J. Appl. Phys., 35, 996-997 (1964)

    Article  ADS  Google Scholar 

  42. H. Bizette, J. Phys. Radium, 12, 161 (1951)

    Article  Google Scholar 

  43. L. Neel, Ann. de Phys. 3, 137 (1948)

    Google Scholar 

  44. Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev., 87, 290-294 (1952)

    Article  ADS  Google Scholar 

  45. J. Kanamori, Prog. Theor. Phys., 20, 890 (1958)

    Article  ADS  Google Scholar 

  46. A.A. Abrikosov, Modern state of the problem of superconductivity. Uspekhi physicheskih nauk, 87, 125-142 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Eremenko, V., Sirenko, V. (2006). INTRINSICALLY INHOMOGENEOUS MAGNETIC STATES IN ANTIFERROMAGNETS. In: Franse, J., Eremenko, V., Sirenko, V. (eds) Smart Materials for Ranging Systems. NATO Science Series II: Mathematics, Physics and Chemistry, vol 226. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4646-4_4

Download citation

Publish with us

Policies and ethics