Skip to main content

Towards self-disassembling products Design solutions for economically feasible large-scale disassembly

  • Conference paper
Innovation in Life Cycle Engineering and Sustainable Development

Abstract

From an economic point of view the productivity associated with commonly available disassembly methods today seldom makes disassembly the preferred end-of-life solution for massive take back product streams. In consequence systematic reuse of parts or components, or recycling of pure material fractions are normally not achievable. Economic models demonstrate that the efficiency of disassembly operations should be increased an order of magnitude to assure the competitiveness of ecologically preferred, disassembly oriented end-of-life scenarios. Using fully automated disassembly techniques does not allow to overcome this efficiency gap if not combined with innovative reversible joints. Enhanced disassembly principles, in which external trigger signals allow to simultaneously reverse the action of multiple fasteners, forms a promising approach to low cost mass disassembly. In this paper a state-of-the-art of these emerging techniques is sketched, categorising the fasteners according to their generic applicability and the degree of imbedded automation of the triggerable disassembly activity. A number of perspectives for innovative reversible fasteners are sketched as a contribution to this promising paradigm of selfdisassembling products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nederlandse Tweede Kamer, Motie Lansink, Vergaderjaar 1979–1980, 15–800, nr.21.

    Google Scholar 

  2. Willems B., Dewulf W., Duflou J., 2004, Can Large-Scale Disassembly Be Profitable? A Linear Programming Approach to Quantifying the Need for Disassembly Time Reductions, Submitted in International Journal of Production Research.

    Google Scholar 

  3. Meerkamm H., 2003, Integrated product development as a key to sustainable products, Proc.ICED '03, Stockholm, Sweden, 19–21 August, Paper No.1673.

    Google Scholar 

  4. Boothroyd G., Alting L., 1992, Keynote Paper: Design for Assembly and Disassembly. Annals of the CIRP, 41, pp. 625–636.

    Article  Google Scholar 

  5. Harjula T., Knight W., Boothroyd G., Rapoza B., 1996, Design for Disassembly and the environment, Annals of the CIRP, 45, pp.109.

    Google Scholar 

  6. Seliger G., Basdere B., Keil T., Rebafka U., 2002, Innovative Processes and Tools for Disassembly. CIRP Annals Manufacturing Technology, San Sebastian, pp. 37–40.

    Google Scholar 

  7. Scholz-Reiter, B., Scharke, H. and Hucht, A., 1999, Flexible robot-based disassembly cell for obsolete TV-sets and monitors. Robotics, Computers and Integrated Manufacturing, 15, 247–255.

    Article  Google Scholar 

  8. Niewohner J., Renz R., 2003, Electronic Waste-quantification of the disassembly time, Proceedings of Colloquium e-ecological manufacturing, Berlin, p.111–113.

    Google Scholar 

  9. Masui K., Mizuhara K., Ishii K., Rose C., 1999,Development of products embedded disassembly process based on end-of-life strategies, Proceedings of the EcoDesign '99: First International Symposium on Environmentally Consious Design and Inverse Manufacturing, Tokyo, Japan, December 10–11, pp. 570–575.

    Google Scholar 

  10. Klett J., Blessing L., 2004, Selection and modification of connections, Proceedings of the 8th International Design Conference, Dubrovnik, Croatia, pp.1283–1288.

    Google Scholar 

  11. Klett J., Blessing L., 2003, Methodische Konzeption demontageunterstutzender verbindungen, Proceedings of the Design for X Symposium, Neukirchen, Germany, pp.71–78.

    Google Scholar 

  12. Klett J., Cosiglio S., Blessing L., Seliger G., 2004, Systematic development of easy-to-unlock connections and a flexible unlocking tool, Proceedings of the Global conference on sustainable product development and life cycle engineering, pp.965–968.

    Google Scholar 

  13. Braunschweig A., 2003, Flexibel Automatisierte Demontage - Flexibel Automatic Disassembly, Konstruktion, September 9, pp.54–58 .

    Google Scholar 

  14. Braunschweig A., September 23–25, 2004, Automatic Disassembly of snap-in joints in electromechanical devices, Proceedings of the 4th International Congress Mechanical Engineering Technologies '04.

    Google Scholar 

  15. Nishiwaki S., Saitou K., Min S., Kikuchi N., 2000, Topological design considering flexibility under periodic loads, Structural Multidiciplinary optimisation, pp. 4–16.

    Google Scholar 

  16. Li Y., Saitou K., Kikuchi N., 2001, Design of heat-activated reversible integral attachments for product-embedded disassembly, Proceedings of the EcoDesign '01: Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, December 11–15, pp.360–365.

    Google Scholar 

  17. Jones N., Harrison D., Billet E., Chiodo J., 2004, Electrically self-powered active disassembly, Proceedings of the institution of mechanical engineers - Part B: Journal of Engineering Manufacture, vol. 218 (7), pp.689–697.

    Google Scholar 

  18. Chiodo J., McLaren J., Billett E., Harrisson D., 2000, Isolating LCD's at end-fo-life using active disassembly technology: a feasibility study, Proceedings IEEE International Symposium on Electronics and the Environment, San Fransisco, California, USA, May, pp. 318–323.

    Google Scholar 

  19. Chiodo J., Billett E., Harrison D., 1999, Active Disassembly Using Shape Memory Polymers for the Mobile Industry, IEEE International Symposium on Electronics and the Environment - ISEE, Denvers, Massachusetts, USA, May 11–19, pp. 151 - 156.

    Google Scholar 

  20. Chiodo J., Jones N., Billett E., Harrison D., 2002, Shape memory alloy actuator for active disassembly using 'smart' materials of consumers electronic products, Materials and Design, Vol. 23, pp.471–478.

    Article  Google Scholar 

  21. Chiodo J., Harrison D., Billet E., 2001, An initial investigation into active disassembly using shape memory polymers, Proceedings of the institution of mechanical engineers -Part B: Journal of Engineering Manufacture, Vol. 215 (5), pp.733–741.

    Article  Google Scholar 

  22. Arnaiz S., Bodenhoefer K., Herrmann C., Hussein H., Irasarri L., Schnecke D., Tanskanen P., 2002, Invited session: Active disassembly using smart material (ADSM) A status report of the ongoing EU project, Care Innovation, November 25–28 Vienna.

    Google Scholar 

  23. Wilkes S., 2003, Active Disassembly - the end of electronic life as we know it, Materials World, 11 (11), pp.20–22.

    Google Scholar 

  24. Sakai K., Okada H., Tanigawa M., Yasuda T., 2003, Study of auto-disassembly system using shape memory materials, Proceedings of the EcoDesign 2003 Conference: 3rd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, December 8–11, pp. 504–509.

    Google Scholar 

  25. Suga T., Hosoda N., 2000, Active disassembly and reversible interconnection, Proceedings IEEE International Symposium on Electronics and the Environment, San Fransisco, California, USA, May, pp.330–334.

    Google Scholar 

  26. Neubert H., 2000, Simultan lösbare Verbindungen zur Rationalisierung der Demontage in der Feinwerktechnik. Dissertation, Technical University of Dresden.

    Google Scholar 

  27. Das S., Yedlarajiah P., Narendra R., 2000, An approach for estimating the end-of-life product disassembly effort and cost, International Journal of Production Research, vol. 38 (3), pp. 657–673.

    Article  MATH  Google Scholar 

  28. Jovane F., Alting L., Armillotta A., Eversheim W., Feldmann K., Seliger G. and Roth N., 1993, Keynote Paper: A Key Issue in Product Life Cycle: Disassembly, Annals of the CIRP, 42, pp.651–658.

    Google Scholar 

  29. Bar-Cohen Y., 2002, Electro-active polymers: current capabilities and challenges, Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, San Diego, California, USA, March 18–21, pp.1–7.

    Google Scholar 

  30. Ashley S., 2003, Artificial Muscles, Scientific American, October, pp.35–41.

    Google Scholar 

  31. Vogan J., Wingert A., Plante J., Dubowsky S, Hafez M., Kacher D., Jolesz F, 2004, Manipulation in MRI devices using electrostrictive polymer actuators: with an application to reconfigurable imaging coils, Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, Los Angeles, USA, pp. 2498–2504.

    Google Scholar 

  32. Eury S., Yimnirun R., Sundar V., Moses P., Jang S., Newnham R., 1999, Converse electrostriction in polymers and composites, Materials Chemistry and Physics, Vol. 61, pp. 18–23.

    Article  Google Scholar 

  33. Otake M., Kagami Y., Ishikawa K., 2002, Shape design of gel robots made of electroactive polymer gel, Proceedings of the SPIE Smart Structures and Materials Symposium, San Diego, California, USA, March 18–21, pp. 194–202.

    Google Scholar 

  34. Otake M., Kagami Y., Inaba M., Inoue H., 2002, Motion design of a starfish-shaped gel robot made of electra-active polymer gel, Robotics and Autonomous Systems, Vol. 40, pp. 185–191.

    Article  Google Scholar 

  35. Onoda M., Shonaka H., Tada K., 2004, A self-organized bending-beam electrochemical actuator, Current Applied Physics, In Press.

    Google Scholar 

  36. Pasquale M., 2003, Mechanical sensors and actuators, Sensors and Actuators, Vol. 106, pp. 142–148.

    Article  Google Scholar 

  37. Nishi Y., Yabe H., Hagiwara N., Oguri K., Asaka T., Uchida H., Matsumura Y., Uchida H., 2001, Three types of magnetic field operated shape memory effects, Proceedings of the SPIE, Vol. 4234, pp.76–81.

    Article  Google Scholar 

  38. Wang J., Meng G., 2001, Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering, Proceedings of the Institution of Mechnical Engineers, Vol. 215, pp. 165–174.

    Article  Google Scholar 

  39. Ikehara T., Tanaka M., Shimada S., Matsuda H., 2001, Optically-driven polymer actuator using reversible photo-induced phase-transition phenomena, Proceedings of the SPIE, Vol.4234, pp.215–222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Duflou, J., Willems, B., Dewulf, W. (2006). Towards self-disassembling products Design solutions for economically feasible large-scale disassembly. In: Brissaud, D., Tichkiewitch, S., Zwolinski, P. (eds) Innovation in Life Cycle Engineering and Sustainable Development. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4617-0_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4617-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4601-8

  • Online ISBN: 978-1-4020-4617-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics