Skip to main content

ANALYSIS OF UNSTEADY AEROTHERMODYNAMIC EFFECTS IN A TURBINE-COMBUSTOR

  • Conference paper
Book cover UNSTEADY AERODYNAMICS, AEROACOUSTICS AND AEROELASTICITY OF TURBOMACHINES

Abstract

This paper presents a numerical investigation of the unsteady transport phenomena in a turbine-combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species conservation equations. The chemistry model used herein is a two-step, global, finite rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite difference approximation. This numerical algorithm has been used to investigate the airfoil temperature variation and the unsteady blade loading in a four-stage turbine-combustor. The numerical simulations indicated that in situ reheat increased the turbine power by up to 5.1%. The turbine combustion also increased blade temperature and unsteady blade loading. Neither the temperature increase nor the blade loading increase exceeded acceptable values for the turbine investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balakrishnan, A. (1987). Application of a flux-split algorithm to chemically relaxing, hyper-velocity blunt-body flows. In 22nd Thermophysics Conference, Honolulu, Hawaii. AIAA. AIAA Paper 87–1578.

    Google Scholar 

  • Butler, T. L., Sharma, O. P., Joslyn, H. D., and Dring, R. P. (1989). Redistribution of an inlet temperature distortion in an axial flow turbine stage. Journal of Propulsion and Power, 5: 64–71.

    Google Scholar 

  • Cizmas, P., Flitan, H., and Isvoranu, D. (2003). Numerical prediction of unsteady blade loading in a turbine-combustor. In 8th National Turbine High Cycle Fatigue Conference. Universal Technology Corporation, Monterey, CA.

    Google Scholar 

  • Cizmas, P. G. A. (1999). Transition and blade count influence on steam turbine clocking. Technical report, Texas Engineering Experiment Station, College Station, Texas.

    Google Scholar 

  • Cizmas, P. G. A. and Subramanya, R. (1997). Parallel computation of rotor-stator interaction. In Fransson, Torsten H., editor, The Eighth International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, pages 633–643, Stockholm, Sweden.

    Google Scholar 

  • Dills, R. R. and Follansbee, P. S. (1979). Use of thermocouples for gas temperature measurements in a gas turbine combustor. Technical report, National Bureau of Standards. Special Publication 561.

    Google Scholar 

  • Dorney, D. J., Gundy-Burlet, K. L., and Sondak, D. L. (1999). A survey of hot streak experiments and simulations. International Journal of Turbo and Jet Engines, 16 (1):1–15.

    Google Scholar 

  • Dorney, D. J., Sondak, D. L., and Cizmas, P. G. A. (2000). Effects of hot streak/airfoil ratios in a high-subsonic single-stage turbine. International Journal of Turbo and Jet Engines, 17 (2):119–132.

    Google Scholar 

  • Eberhardt, S. and Brown, K. (1986). A shock capturing technique for hypersonic, chemically relaxing flows. In 24th Aerospace Sciences Meeting, Reno, Nevada. AIAA. AIAA Paper 86–0231.

    Google Scholar 

  • Elmore, D. L., Robinson, W. W., and Watkins, W. B. (1983). Dynamic gas temperature measurement system. Technical report, NASA. Contractor Report 168267.

    Google Scholar 

  • Graham, R. W. (1980). Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades. Heat Transfer Engineering, 2 (1):39–47. also published as ASME Paper 97-HT-43.

    Google Scholar 

  • Hautman, J., Dryer, F. L., Schug, K. P., and Glassman, I. (1981). A multiple-step overall kinetic mechanism for the oxidation of hydrocarbons. Combustion Science and Technology, 25: 219–235.

    Google Scholar 

  • Isvoranu, D. D. and Cizmas, P. G. A. (2002). Numerical simulation of combustion and rotor-stator interaction in a turbine-combustor. In The Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-9), Honolulu, Hawaii.

    Google Scholar 

  • Kirtley, K. R., Celestina, M. L., and Adamczyk, J. J. (1993). The effect of unsteadiness on the time-mean thermal loads in a turbine stage. SAE Paper 931375.

    Google Scholar 

  • Krouthen, Bjorn and Giles, Michael B. (1988). Numerical investigation of hot streaks in turbines. In 24th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Boston, Massachusetts. AIAA Paper 88–3015.

    Google Scholar 

  • Li, C. P. (1987). Chemistry-split techniques for viscous reactive blunt body flow computations. In 25th Aerospace Sciences Meeting, Reno, Nevada. AIAA. AIAA Paper 87–0282.

    Google Scholar 

  • Manwaring, S. and Kirkeng, K. (1997). Forced response vibrations of a low pressure turbine due to circumferential temperature distortions. In Proceedings of The 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, pages 379–392, Stockholm, Sweden.

    Google Scholar 

  • Rai, M. M. (1985). Navier-Stokes simulation of rotor-stator interaction using patched and overlaid grids. In AIAA 7th Computational Fluid Dynamics Conference, Cincinnati, Ohio. AIAA Paper 85–1519.

    Google Scholar 

  • Rai, M. M. and Chakravarthy, S. (1986). An implicit form for the Osher upwind scheme. AIAA Journal, 24: 735–743.

    Article  MathSciNet  MATH  Google Scholar 

  • Rai, M. M. and Dring, R. P. (1990). Navier-Stokes analyses of the redistribution of inlet temperature distortions in aturbine. Journal of Propulsion and Power, 6 (3):276–282. also published as AIAA Paper 87–2146.

    Google Scholar 

  • Schwab, J. R., Stabe, R. G., and Whitney, W. J. (1983). Analytical and experimental study of flow through and axial turbine stage with a nonuniform inlet radial temperature profile. In 19th AIAA/SAE/ASME Joint Propulsion Conference, Seattle, WA. AIAA Paper 83–1175.

    Google Scholar 

  • Shang, T. and Epstein, A. H. (1996). Analysis of hot streak effects on turbine rotor heat load. In International Gas Turbine and Aeroengine Congress, Birmingham, UK. ASME Paper 96-GT-118.

    Google Scholar 

  • Shang, T., Guenett, G. R., Epstein, A. H., and Saxer, A. P. (1995). The influence of inlet temperature distortion on rotor heat transfer in a transonic turbine. In 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Diego, CA. AIAA Paper 95–3042.

    Google Scholar 

  • Sharma, O. P., Pickett, G. F., and Ni, R. H. (1992). Assessment of unsteady flows in turboma-chines. Journal of Turbomachinery, 114 (1):79–90. also published as ASME Paper 90-GT-150.

    Article  Google Scholar 

  • Sirignano, W. A. and Liu, F. (1999). Performance increases for gas-turbine engines through combustion inside the turbine. Journal of Propulsion and Power, 15 (1): 111–118.

    Google Scholar 

  • Stabe, R. G., Whitney, W. J., and Moffitt, T. P. (1984). Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile. In 20th AIAA/SAE/ASME Joint Propulsion Conference, Cincinnati, OH. AIAA Paper 84–1161.

    Google Scholar 

  • Steger, J. L. and Warming, R. F. (1981). Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. Journal of Computational Physics, 40: 263–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi, R. K. and Ni, R. H. (1991). Unsteady hot streak migration through a 1-1/2 stage turbine. In 27th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Sacramento, CA. AIAA Paper 91–3382.

    Google Scholar 

  • Warming, R. F. and Beam, R. M. (1978). On the construction and application of implicit factored schemes for conservation laws. SIAM-AMS Proceedings, 11: 85–129.

    MathSciNet  Google Scholar 

  • Westbrook, C. K. and Dryer, F. L. (1981). Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology, 27: 31–43.

    Google Scholar 

  • Whitney, W. J., Stabe, R. G., and Moffitt, T. P. (1980). Description of the warm core turbine facility and the warm annular cascade facility recently installed at NASA Lewis Research Center. Technical report, NASA. Technical Memorandum 81562.

    Google Scholar 

  • Yee, H. C. (1987). Construction of explicit and implicit symmetric schemes and their applications. Journal of Computational Physics, 68: 151–179.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Flitan, H.C., Cizmas, P.G., Lippert, T., Bachovchin, D., Little, D. (2006). ANALYSIS OF UNSTEADY AEROTHERMODYNAMIC EFFECTS IN A TURBINE-COMBUSTOR. In: Hall, K.C., Kielb, R.E., Thomas, J.P. (eds) UNSTEADY AERODYNAMICS, AEROACOUSTICS AND AEROELASTICITY OF TURBOMACHINES. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4605-7_40

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4605-7_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4267-6

  • Online ISBN: 978-1-4020-4605-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics