Skip to main content

CORE-COMPRESSOR ROTATING STALL SIMULATION WITH A MULTI-BLADEROW MODEL

  • Conference paper

Abstract

The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Using a 3D viscous time-accurate flow representation, the front bladerows of a core-compressor were modeled in a wholeannulus fashion. The engine core flow boundary conditions were obtained from a mixing-plane steady-state calculation for which the low pressure compression domain was also modeled. A variable-area nozzle, placed after the last compressor bladerow in the model, was used to impose ambient boundary conditions downstream. The rotating stall behavior at two different compressor operating points was studied by considering two different variable-vane scheduling conditions for which experimental data were available. In all cases, the rotating stall was initiated by introducing a small amount of geometric mistuning to the rotor blades. Using 3- and 6-bladerow models, the unsteady flow calculations were conducted on 32-CPUs of a parallel cluster, typical run times being around 3–4 weeks for a grid with about 30 million points. The simulations were conducted over several engine rotations. As observed on the actual development engine, 6 rotating stall cells were obtained for the first scheduling condition while malscheduling of the stator vanes increased the number of rotating stall cells to 13. Although there was some discrepancy between predicted and measured speed of the rotating stall pattern, it was concluded that the large-scale modeling methodology could simulate both the onset of rotating stall and its development as a function of vane scheduling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Greitzner, E. M. (1978) “Surge and rotating stall in axial flow compressors. Parts 1 & 2” ASME J. of Engineering for Power 98, 190–217.

    Google Scholar 

  • Longley, J. and Hynes, T. P. (1990) “Stability of flow through multi-stage axial compressors”, ASMEJ of Turbomachinery 112, 126–132.

    Google Scholar 

  • Weigl, H. J., Paduano, J. D., Frechette, L. G., Epstein, A. H., Greitzer, E. M., Bright, M. M. and Strazisar, A. J. (1998) “Active Stabilization of Rotating Stall and Surge in a Transonic Single-Stage Compressor” Journal of Turbomachinery 120, 625–636.

    Article  Google Scholar 

  • Moore, F. and Greitzer, E. M. (1986) “A theory of post-stall transients in axial compressors”. ASME J. of Eng for Gas Turbines & Power 108, 371–379.

    Google Scholar 

  • Paduano, J., Epstein, A. H., Greitzner, E. M. and Guenette, G. (1994) “Modelling for control of rotating stall” Automatica 30, 1357–1373.

    Article  MATH  Google Scholar 

  • Niazi, S. (2000) Numerical simulation of rotating stall and surge alleviation in axial compressors. PhD thesis, Georgia Institute of Technology, Dept of Aerospace Engineering, Atlanta, USA

    Google Scholar 

  • He, L., (1997) “Computational study of rotating stall inception in axial compressors”, AIAA Journal of Power and Propulsion 13 (1), 31–38.

    Google Scholar 

  • Sayma, A. I, Vahdati, M., Sbardella, L. and Imregun, M. (2000) “Modelling of 3D viscous compressible turbomachinery flows using unstructured hybrid grids”. AIAA Journal, 38 (6), 945–954.

    Article  Google Scholar 

  • Sbardella, L. Sayma, A. and Imregun, M. (2000) “Semi-structured meshes for axial turbomachinery blades”. International Journal for Numerical Methods in Fluids 32 (5), 569–584.

    Article  MATH  Google Scholar 

  • Rai, M. M. (1986) “Implicit conservative zonal boundary scheme for Euler equation calculations” Computers & Fluids 14, 295–319.

    Article  Google Scholar 

  • Sayma, A. I., Vahdati, M. and Imregun, M. (2000) “Multi-bladerow fan forced response predictions using an integrated 3D time-domain aeroelasticity model” J of Mechanical Engineering Science, Part C, 214 (12), 1467–1483.

    Article  Google Scholar 

  • Vahdati, M., Breard, C., Sayma, A. and Imregun, M. (2003) “An integrated time-domain aeroelasticity model for the prediction of fan forced response due to inlet distortiona” ASME Journal of Engineering for Gas Turbines & Power 124 (1), 196–208.

    Google Scholar 

  • Vahdati, M., Sayma, A., Freeman, C. and Imregun, M. (2003) “On the use of atmospheric boundary conditions for axial-flow compressor stall simulations”. Submitted to the ASME J of Turbomachinery

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Vahdati, M., Sayma, A., Imregun, M., Simpson, G. (2006). CORE-COMPRESSOR ROTATING STALL SIMULATION WITH A MULTI-BLADEROW MODEL. In: Hall, K.C., Kielb, R.E., Thomas, J.P. (eds) UNSTEADY AERODYNAMICS, AEROACOUSTICS AND AEROELASTICITY OF TURBOMACHINES. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4605-7_23

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4605-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4267-6

  • Online ISBN: 978-1-4020-4605-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics