Skip to main content

Stellar Engines and the Controlled Movement of the Sun

  • Chapter
Macro-Engineering

Part of the book series: Water Science and Technology Library ((WSTL,volume 54))

Abstract

A stellar engine is defined in this chapter as a device that uses the resources of a star to generate work. Stellar engines belong to class A and B when they use the impulse and the energy of star’s radiation, respectively. Class C stellar engines are combinations of types A and B. Minimum and optimum radii were identified for class C stellar engines. When the Sun is considered, the optimum radius is around 450 millions km. Class A and C stellar engines provide almost the same thrust force. A simple dynamic model for solar motion in the Galaxy is developed. It takes into account the (perturbation) thrust force provided by a stellar engine, which is superposed on the usual gravitational forces. Two different Galaxy gravitational potential models were used to describe solar motion. The results obtained in both cases are in reasonably good agreement. Three simple strategies of changing the solar trajectory are considered. For a single Sun revolution the maximum deviation from the usual orbit is of the order of 35 to 40pc. Thus, stellar engines of the kind envisaged here may be used to control to a certain extent the Sun movement in the Galaxy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badescu V (1993) Maximum concentration ratio of direct solar radiation. Appl Optics 32(12):2187–2189

    Article  Google Scholar 

  • Badescu V (1995) On the radius of the Dyson sphere. Acta Astronautica 36:135–138

    Article  Google Scholar 

  • Badescu V (2004) Simulation of a solar Stirling engine operation under various weather conditions on Mars. J Solar Energy Eng 126:812–818

    Article  CAS  Google Scholar 

  • Badescu V, Cathcart RB (2000) Stellar engines for Kardashev’s type II civilisations. J Br Interplanet Soc 53:297–306

    Google Scholar 

  • Badescu V, Cathcart RB (2006) Use of class A and class C stellar engines to control sun movement in the galaxy. Acta Astronautica 58:119–129

    Article  Google Scholar 

  • Bash F (1986) The present, past and future velocity of nearby stars: the path of the Sun in 108 years. In: Smoluchowski R, Bahcall JN, Matthews MS (eds) The Galaxy and the Solar System. The University of Arizona Press, Tucson

    Google Scholar 

  • Bejan A (1996) Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys 79:1191–1218

    Article  CAS  Google Scholar 

  • Beju I, Soos E, Teodorescu PP (1976) Tehnici de Calcul Vectorial Cu Aplicatii, Editura Tehnica, Bucuresti

    Google Scholar 

  • Bienayme O (1999) The local stellar velocity of the galaxy: galactic structure and potential. Astronomy Astrophysics 341:86–97

    Google Scholar 

  • Carlberg RG, Innanen KA (1987) Galactic chaos and the circular velocity at the sun. Astron J 94:666–670

    Article  Google Scholar 

  • Clube SVM, Napier WM (1984) Terrestrial catastrophism: Nemesis or galaxy? Nature 311:635–636

    Article  Google Scholar 

  • Criswell DR (1985) Solar system industrialization: implications for interstellar migrations. In: Finney R, Jones EM (eds) Interstellar Migration and the Human Experience. University of California Press, Berkeley, pp 50–87

    Google Scholar 

  • Darling D (2004) The Universal Book of Astronomy. Wiley, New York, pp 456

    Google Scholar 

  • De Vos A (1985) Efficiency of some heat engines at maximum-power conditions. Am J Phys 53(5):570–573

    Article  Google Scholar 

  • Dehnen MW, Binney JJ (1998) Local stellar kinematics from HIPPARCOS data. Monthly Notices Royal Astronom Society 298:387–394

    Article  Google Scholar 

  • Dyson FJ (1966) The search for extraterrestrial technology. In: Marshak RE (ed) Perspectives in modern physics. Interscience Publishers, New York, pp 641–655

    Google Scholar 

  • Fogg MJ (1989) Solar exchange as a means of ensuring the long term habitability of the Earth. Spec Sci Technol 12:153–157

    Google Scholar 

  • Fogg MJ (1995) Terraforming: Engineering Planetary Environments. SAE, Warrendale

    Google Scholar 

  • Fong KW, Jefferson TH, Suyehiro T, Walton L (1993) Guide to the SLATEC common mathematical library. Energy Science and Technology Software Center, PO Box 1020, Oak Ridge, TN 37831, USA

    Google Scholar 

  • Gonzalez G (1999) Is the Sun anomalous? Astronomy Geophys 40:5.25–5.25.29

    Google Scholar 

  • Hills JG (1984) Close encounters between a star-planet system and a stellar intruder. Astron J 89:1559–1564

    Article  Google Scholar 

  • Hoffmann KH, Burzler JM, Schubert E (1997) Endoreversible Thermodynamics. J Non-Equilib Thermodyn 22:311–355

    Article  CAS  Google Scholar 

  • Infante F (1992) Projects for the reconstruction of the firmament. Leonardo 25:11

    Article  Google Scholar 

  • Jones EM (1981) Discrete calculations of interstellar migration and settlement. Icarus 46:328–336

    Article  Google Scholar 

  • Kardashev NS (1964) Transmission of information by extraterrestrial civilisations, Astron Zh 8:217

    Google Scholar 

  • Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74:472–494

    Article  CAS  Google Scholar 

  • Knill O (2003) Moving the solar system. http://www.dynamical.systems.org/zwicky/Essay.html

    Google Scholar 

  • Korykansky DG (2004) Astroengineering, or how to save the Earth in only one billion years. Rev Mex A A (Serie Conferencias) 22:117–120

    Google Scholar 

  • Korykansky DG, Laughlin G, Adams FC (2001) Astronomical engineering: a strategy for modifying planetary orbits. Astrophys Sp Sci 275:349–366

    Article  Google Scholar 

  • Kovalevsky J (1999) First results from HIPPARCOS. Annu Rev Astronomy Astrophys 36:99–130

    Article  Google Scholar 

  • Landsberg PT, Badescu V (1998) Solar energy conversion: list of efficiencies and some theoretical considerations. Part I – Theoretical considerations. Prog Quantum Electronics 22:211–230

    Article  Google Scholar 

  • McInnes CR (2002) Astronomical engineering revisited: planetary orbit modification using solar radiation pressure. Astrophys Sp Sci 282:765–772

    Article  Google Scholar 

  • Mishunov Yu N, Zenina IA (1999) Yes, the Sun is located near the corotation circle. Astronomy Astrophys 341:81–85

    Google Scholar 

  • Moore P (1970) Atlas of the Universe. Mitchell Beazley Ltd, London, pp 35,155,159,169

    Google Scholar 

  • Nakajima S, Hayashi YY, Abe Y (1992) A study of the ‘runaway greenhouse effect’ with a one-dimensional radiative convective equilibrium model. J Atmos Sci 49:2256

    Article  Google Scholar 

  • Napier WN (1985) Comet formation in molecular clouds. Icarus 62:384

    Article  Google Scholar 

  • Newman WI, Sagan C (1981) Galactic civilizations: population dynamics and interstellar diffusion. Icarus 46:293–327

    Article  Google Scholar 

  • Pal A, Ureche V (1983) Astronomie. Ed. Didactica si Pedagogica, Bucharest, pp. 161

    Google Scholar 

  • Sackmann I-J, Boothroyd AI, Kraemer KE (1993) Our Sun III: Present and future. Astrophys J 418:457

    Article  CAS  Google Scholar 

  • Shkadov LM (1987) Possibility of controlling solar system motion in the galaxy. 38th Congress of IAF, paper IAA-87–613. Brighton, UK, October 10–17

    Google Scholar 

  • Ureche V (1987) Universul. Astrofizica, vol 2. Dacia, Cluj-Napoca

    Google Scholar 

  • Zuckerman B (1985) Stellar evolution: motivation for mass interstellar migrations. Q J R Astr Soc 26:56–59

    Google Scholar 

  • Zwicky F (1957) Morphological astronomy. Springer-Verlag, Berlin, pp. 260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Badescu, V., Cathcart, R.B. (2006). Stellar Engines and the Controlled Movement of the Sun. In: Badescu, V., Cathcart, R.B., Schuiling, R.D. (eds) Macro-Engineering. Water Science and Technology Library, vol 54. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4604-9_12

Download citation

Publish with us

Policies and ethics