Skip to main content

Planetary Macro-Engineering Using Orbiting Solar Reflectors

  • Chapter

Part of the book series: Water Science and Technology Library ((WSTL,volume 54))

Abstract

The prospect of engineering a planetary climate raises a multitude of issues associated with climatology, engineering on truly macroscopic scales and indeed the ethics of such ventures. Depending on personal views, such large-scale engineering is either an obvious necessity for the deep future, or yet another example of human conceit. In this chapter a simple climate model will be used to assess the possibility of engineering the Earth’s climate (geo-engineering) using large orbiting reflectors. Two particular cases will be considered: active cooling of the climate to mitigate against anthropogenic climate change due to a doubling of the carbon dioxide concentration in the Earth’s atmosphere and active heating of the climate to mitigate against an advance of the polar ice sheets of a magnitude comparable to that induced by the Milankovitch cycles. These two cases will be used as representative scenarios to allow the scale of the engineering challenge to be determined. In addition, even more visionary applications of solar reflectors to slowly manipulate the Earth’s orbit will be investigated. While, engineering on such scales appears formidable at present, emerging capabilities to process lunar and asteroid material will allow such ventures to be considered in the future. This chapter aims to provide a foretaste of such future possibilities

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badescu V (2005) Regional and seasonal limitations for Mars intrinsic ecopoiesis. Acta Astronaut 56:670–680

    Article  CAS  Google Scholar 

  • Badescu V, Cathcart R (2000) Stellar engines for Kardashev type II civilisations. J Br Interplanet Soc 53:297–306

    Google Scholar 

  • Benzi R, Parisi G, Sutera A, Vulpiani A (1983) A theory of stochastic resonance in climatic change. SIAM J Appl Math 43: 565–578

    Article  Google Scholar 

  • Berglund N, Gentz B (2001) Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Proc. of the 2nd Workshop on Stochastic Climate Models, Chorin, Germany

    Google Scholar 

  • Birch P (1991) Terraforming Venus quickly. J Br Interplanet Soc 44:157–167

    Google Scholar 

  • Birch P (1992) Terraforming Mars quickly. J Br Interplanet Soc 45:331–340

    Google Scholar 

  • Birch P (1993) How to move a planet. J Br Interplanet Soc 46:314–316

    Google Scholar 

  • Bookless J, McInnes CR (2004) Dynamics, stability and control of displaced non-Keplerian orbits, IAC-04-A.7.09. 55th International Astronautical Congress, Vancouver

    Google Scholar 

  • Budyko MI (1969) The effect of solar radiation variations on the climate of the Earth. Tellus 21:611–619

    Article  Google Scholar 

  • Cicerone RJ, Elliott S, Turco RP (1992) Global environmental engineering. Nature 356:9

    Article  Google Scholar 

  • Early JT (1989) Space-based solar shield to offset greenhouse effect. J Br Interplanet Soc 42:567–569

    Google Scholar 

  • Emanuel K (2002) A simple model of multiple climate regimes. J Geophys Res (Atmospheres) 107, Issue D9, pp. ACL 4–1, CiteID 4077, DOI 10.1029/2001JD001002

    Google Scholar 

  • Fogg M (1992) A synergestic approach to terraforming Mars. J Br Interplanet Soc 45:315–329

    Google Scholar 

  • Free M, Robock A (1999) Global warming in the context of the little ice age. J Geophys Res 104:19057–19070

    Article  Google Scholar 

  • Gehrels T (ed) (1979) Asteroids. University of Arizona Press, Tucson

    Google Scholar 

  • Gerstell MF, Francisco JS, Yung YL, Boxe C, Aaltonee ET (2001) Keeping Mars warm with new super greenhouse gases. Proc Natl Acad Sci USA 98:2154–2157

    Article  CAS  Google Scholar 

  • Govindasamy B, Caldeira K (2000) Geo-engineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27:2141–2144

    Article  CAS  Google Scholar 

  • Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C (2002) Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett 29. Issue 22, pp. 18–1, CiteID 2061, DOI 10.1029/2002GL015911 (GeoRL Homepage)

    Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218

    Google Scholar 

  • Higuchi K (1970) A possibility of constructing a dam to change the general oceanic circulation. 2nd International Future Research Conference, Kyoto

    Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  CAS  Google Scholar 

  • Hudson H (1991) A space parasol as a countermeasure against the greenhouse effect. J Br Interplanet Soc 44:139–141

    Google Scholar 

  • Keith DW (2000) Geoengineering the climate: history and prospect. Annu Rev Energy Environ 25:245–284

    Article  Google Scholar 

  • Korycansky DG, Laughlin G, Adams FC (2001) Astronomical engineering: A strategy for modifying planetary orbits. Astrophys Sp Sci 275:349–366

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  CAS  Google Scholar 

  • Mautner M (1991) A space-based solar screen against climatic warming. J Br Interplanet Soc 44:135–138

    Google Scholar 

  • Mautner M, and Parks K (1990) Space-based control of the climate. Proc. Space 90. Amer Soc Civ Eng, pp 1159–1169

    Google Scholar 

  • McGuffie K, Henderson-Sellers A (1997) A climate modeling primer. John Wiley & Sons, Chichester

    Google Scholar 

  • McInnes CR (1999) Solar sailing: Technology, dynamics and mission applications. Springer-Verlag, London

    Google Scholar 

  • McInnes CR (2002a) Non-Keplerian orbits for Mars solar reflectors. J Br Interplanet Soc 55:74–84

    Google Scholar 

  • McInnes CR (2002b) Minimum mass solar shield for terrestrial climate control. J Br Interplanet Soc 55:307–311

    Google Scholar 

  • McInnes CR (2002c) Astronomical engineering revisited: planetary orbit modification using solar radiation pressure. Astrophys Sp Sci 282:765–772

    Article  Google Scholar 

  • McInnes CR (2004) Deflection of near-Earth asteroids by kinetic energy impacts from retrograde orbits. Plan Sp Sci 52:587–590

    Article  Google Scholar 

  • McInnes CR, McDonald AJC, Simmons JFL, MacDonald EW (1994) Solar sail parking in restricted three-body systems. J Guid Dyn Cont 17:399–406

    Article  Google Scholar 

  • Muller RA, MacDonald GJ (1997) Glacial cycles and astronomical forcing. Science 277:215–218

    Article  CAS  Google Scholar 

  • Oberth H (1972) Ways to spaceflight, NASA Technical Translation TT F-622

    Google Scholar 

  • Pearson J, Oldson J, Levin E (2002) Earth rings for planetary environmental control, IAF-02-U.1.01. 53rd International Astronautical Congress, Houston

    Google Scholar 

  • Rahmstorf S (2003) Timing of abrupt climate change: a precise clock. Geophys Res Lett 30:1510–1514

    Article  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Climate Change 61:261–293

    Article  CAS  Google Scholar 

  • Sagan C (1961) The planet Venus. Science 133:849–858

    Article  Google Scholar 

  • Sagan C (1973) Planetary engineering on Mars. Icarus 20:513–514

    Article  Google Scholar 

  • Schneider SH (2001) Earth systems engineering and management. Nature 409:417–421

    Article  CAS  Google Scholar 

  • Seifritz W (1989) Mirrors to halt global warming. Nature 340:603

    Article  Google Scholar 

  • Shkadov. LM (1987) Possibility of controlling solar system motion in the galaxy, IAA-87–613. 38th International Astronautical Federation Congress, Brighton

    Google Scholar 

  • Teller E, Hyde R, Ishikawa M, Nuckolls J, Wood L (2004) Active climate stabilization: presently-feasible albedo-control approaches to prevention of both types of climate change, Cambridge-MIT Institute. Symposium on Macro-Engineering Options for Climate Change Management and Mitigation, Cambridge

    Google Scholar 

  • Teller E, Wood L, Hyde R (1997) Global warming and ice ages: I. prospects for physics based modulation of global change, UCRL-231636/UCRL JC 128715. Lawrence Livermore National Laboratory

    Google Scholar 

  • Zubrin R, McKay C (1997) Technological requirements for terraforming Mars. J Br Interplanet Soc 50:83–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

McInnes, C.R. (2006). Planetary Macro-Engineering Using Orbiting Solar Reflectors. In: Badescu, V., Cathcart, R.B., Schuiling, R.D. (eds) Macro-Engineering. Water Science and Technology Library, vol 54. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4604-9_11

Download citation

Publish with us

Policies and ethics