Skip to main content

SEMICONDUCTOR NANOSTRUCTURES FOR FUNDAMENTAL PHYSICS AND OPTOELECTRONIC APPLICATIONS

  • Conference paper
Functional Properties of Nanostructured Materials

Part of the book series: Nato Science Series ((NAII,volume 223))

  • 1505 Accesses

Abstract

An overview is given on the fabrication of semiconductor nanostructures and their applications in fundamental physics and optoelectronic devices. With advanced epitaxial growth techniques for self-assembled quantum dots in combination with high resolution lithography and high aspect ratio dry etching techniques, a new class of miniaturized quantum laboratories based on the interaction of single electrons and photons could be realised. High quality quantum dot structures are used to fabricate lasers in the wavelength range from 1 - 2 μm. Examples are shown for telecom and high power applications with extraordinary properties based on specific quantum dot effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kuther, M. Bayer, A. Forchel, A. Gorbunov, V.B. Timofeev, F. Schäfer, J.P. Reithmaier, Phys. Rev. B 58, R7508 (1998).

    Article  ADS  CAS  Google Scholar 

  2. K. Avary, J.P. Reithmaier, F. Klopf, T. Happ, M. Kamp, and A. Forchel, Microelectronic Eng. 61–62, 875 (2002).

    Article  Google Scholar 

  3. S. Rennon, F. Klopf, J.P. Reithmaier, and A. Forchel, Electron. Lett. 37, 690 (2001).

    Article  Google Scholar 

  4. T.D. Happ, I.I. Tartakovskii, V.D. Kulakovskii, J.-P. Reithmaier, M. Kamp, and A. Forchel, Phys. Rev. B 66, 041303 (2002).

    Article  ADS  Google Scholar 

  5. A. Löffler, J.P. Reithmaier, G. Sęk, C. Hofmann, S. Reitzenstein, M. Kamp, A. Forchel, Appl. Phys. Lett. 86, 111105 (2005).

    Article  ADS  Google Scholar 

  6. J.P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V.Kulakovskii, T.L. Reinecke and A. Forchel, Nature 432, 197 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. T. Yoshiel, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, Nature 432, 200 (2004).

    Article  ADS  Google Scholar 

  8. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. J.P. Reithmaier, A. Forchel, IEEE Circuits and Devices Magazine 19, 24 (2003).

    Article  Google Scholar 

  10. J.P. Reithmaier, A. Forchel, Comptes Rendus Physique 4, 611 (2003).

    Article  ADS  CAS  Google Scholar 

  11. J.P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T.W Berg, M. van der Poel, J. Mørk, B. Tromborg, J. Phys. D 38, 2088 (2005).

    Article  ADS  CAS  Google Scholar 

  12. R. Krebs, S. Deubert, J.P. Reithmaier, and A. Forchel, Crystal Growth 251, 742(2003).

    Article  ADS  CAS  Google Scholar 

  13. S. M. Kim, Y. Wang, M. Keever, and J.S. Harris, IEEE Phot. Technol. Lett. 16, 377 (2004).

    Article  ADS  CAS  Google Scholar 

  14. Sumpf, S. Deubert, G. Erbert, J. Fricke, J.P. Reithmaier, A. Forchel, R. Staske, G. Tränkle, Electron. Lett. 39, 1655 (2003).

    Article  CAS  Google Scholar 

  15. F. Klopf, S. Deubert, J.P. Reithmaier, and A. Forchel, Appl. Phys. Lett. 81, 217 (2002).

    Article  ADS  CAS  Google Scholar 

  16. S.-C. Auzanneau, M. Calligaro, M. Krakowski, F. Klopf, S. Deubert, J.P. Reithmaier, A. Forchel, Appl. Phys. Lett. 84, 2238 (2004).

    Article  ADS  CAS  Google Scholar 

  17. A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J.P. Reithmaier, A. Forchel, Appl. Phys. Lett. 86, 253112 (2005).

    Article  ADS  Google Scholar 

  18. S. Deubert, A. Somers, W. Kaiser, R. Schwertberger, J.P. Reithmaier, A. Forchel, J. Cryst. Growth 278, 346 (2005).

    Article  ADS  CAS  Google Scholar 

  19. A. Bilenca, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J.P. Reithmaier, and A. Forchel, Electron. Lett. 38, 1350 (2002).

    Article  CAS  Google Scholar 

  20. R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J.P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, M. Krakowski, Electron. Lett. 40, 760 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

REITHMAIER, J., FORCHEL, A., KRAKOWSKI, M., EISENSTEIN, G. (2006). SEMICONDUCTOR NANOSTRUCTURES FOR FUNDAMENTAL PHYSICS AND OPTOELECTRONIC APPLICATIONS. In: Kassing, R., Petkov, P., Kulisch, W., Popov, C. (eds) Functional Properties of Nanostructured Materials. Nato Science Series, vol 223. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4594-8_39

Download citation

Publish with us

Policies and ethics