Skip to main content

Metal Induced Crystallisation - an Advanced Method for Polycrystalline SI Films Preparation

  • Conference paper
Functional Properties of Nanostructured Materials

Part of the book series: Nato Science Series ((NAII,volume 223))

  • 1487 Accesses

Abstract

Results on the Al- and Ni-induced crystallisation of a-Si deposited by RF magnetron sputtering under isothermal annealing in air, N2, H2+N2, H2 or vacuum are presented. The influences of different technological parameters - substrate temperature, metal concentration and annealing atmosphere - on the crystallinity of the poly-Si films are investigated. The results obtained are explained in terms of a metal induced crystallisation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Haque, H. A. Naseem, and W. D. Brown, J. Appl. Phys. 79, 7529–7534 (1996).

    Article  ADS  CAS  Google Scholar 

  2. O. Nast, T. Puzzer, L. M. Koshier, A. B. Sproul, and S. R. Wenham, Appl. Phys. Lett. 73, 3214–3216. (1998).

    Article  ADS  CAS  Google Scholar 

  3. C. Spinella, S. Lombardo, and F. Priolo, J. Appl. Phys. 84, 5383–5388 (1998).

    Article  ADS  CAS  Google Scholar 

  4. J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett. 63, 1969–1971 (1993).

    Article  ADS  CAS  Google Scholar 

  5. O. Nast and S. R. Wenham, J. Appl. Phys. 88, 124–132 (2000).

    Article  ADS  CAS  Google Scholar 

  6. R. Kishore, A. Shaik, H. A. Naseem, and W. D. Brown, J. Vac. Sci. Technol. B 21, 1037–1042 (2003).

    Article  CAS  Google Scholar 

  7. A. M. Myasnikov, M. C. Poon, P. C. Chan, K. L. Ng, M. S. Chan, W. Y. Chan, S. Singla, and C. Y. Yuen, Mat. Res. Soc. Symp. Proc. V.715, A22.11.1–A22.11.6 (2002).

    Google Scholar 

  8. K. H. Kim, S. J. Park, A. Y. Kim, and J. Jang, J. Non-Cryst. Solids 299–302, 83–87 (2002).

    Article  Google Scholar 

  9. M. A. T. Izmajlowicz, A. J. Flewitt, W. I. Milne, and N. A. Morrison, J. Appl. Phys. 94, 1735–1741 (2003).

    Article  Google Scholar 

  10. S. F. Gong, H. T. G. Hentzell, and A. E. Robertson, J. Appl. Phys. 64, 1457–1462 (1988).

    Article  ADS  CAS  Google Scholar 

  11. L. Hultman, A. Robertson, H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, J. Appl. Phys. 62, 3647–3655 (1987).

    Article  ADS  CAS  Google Scholar 

  12. L. Pereira, A. Hguas, R. M. S. Martins, P. Vilarinho, E. Fortunato, and R. Martins, Thin Solid Films 451–452, 334–339 (2004).

    Article  Google Scholar 

  13. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89–91 (1964).

    Article  ADS  CAS  Google Scholar 

  14. F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, Yu. L. Khait, R. Wiel, and W. Beyer, J Appl. Phys. 75, 7875–7880 (1994).

    Article  ADS  CAS  Google Scholar 

  15. S. Gall, M. Muske, I. Sieber, O. Nast, and W. Fuhs, J. Non-Cryst. Solids 299–302, 741–744 (2002).

    Article  Google Scholar 

  16. M. S. Ashitikar and G. L. Sharma, J. Appl. Phys. 78, 913–918 (1995).

    Article  ADS  Google Scholar 

  17. D. Dimova-Malinovska, O. Angelov, M. Kamenova, M. Sendova-Vassileva, and A. Vaseashta, J. Mat. Sci.: Materials in Electronics 14, 747–748 (2003).

    CAS  Google Scholar 

  18. D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, and J.-C. Pivin, Thin Solid Films 451–452, 303–307 (2004).

    Article  Google Scholar 

  19. N. H. Nickel, P. Lengsfeld, and I. Sieber, Phys. Rev. B 61, 15558–15563 (2000).

    Article  ADS  CAS  Google Scholar 

  20. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, Phil. Mag. A 77, 1447–1454 (1998).

    Article  ADS  CAS  Google Scholar 

  21. F. M. Fauchet and I. H. Campbell, Crit. Rev. Solid State Mater. Sci. 14, S79–S96 (1988).

    Article  ADS  Google Scholar 

  22. Z. Igbal and S. Vaprek, J. Phys. C 15, 377–381 (1982).

    Article  ADS  Google Scholar 

  23. S. Boultadakis, S. Logothetidis, S. Ves, and J. Kircher, J. Appl. Phys. 93, 914 -919 (1993).

    Article  ADS  Google Scholar 

  24. R. G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M.-A. Hasan, J. Appl. Phys. 69, 6394–6399 (1991).

    Article  ADS  CAS  Google Scholar 

  25. I. Sieber, R. Schneider, I. Doerfel, P. Schubert-Bischoff, S. Gall, and W. Fuhs, Thin Solid Films 427, 298–302 (2003).

    Article  ADS  CAS  Google Scholar 

  26. P. I. Widenborg and A. G. Aberle, PVSEC-14, 281–302 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Dimova-Malinovska, D. (2006). Metal Induced Crystallisation - an Advanced Method for Polycrystalline SI Films Preparation. In: Kassing, R., Petkov, P., Kulisch, W., Popov, C. (eds) Functional Properties of Nanostructured Materials. Nato Science Series, vol 223. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4594-8_22

Download citation

Publish with us

Policies and ethics