Skip to main content

Deep, Three-Dimensional Silicon Micromachining

  • Chapter
Bonding in Microsystem Technology

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 24))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. K. Petersen, Silicon as a mechanical material. Proceed. IEEE, El. Dev., 70(5), 1982, 420–457.

    Google Scholar 

  2. J.B. Agnell, S.C. Terry, P.W. Barth, Silicon micromechanical devices. Sc. Am., 44, 1983, 44–54.

    Google Scholar 

  3. J. Bryzek, Impact of MEMS technology on society. Sensors and Actuators A, 56, 1996, 1–9.

    Article  Google Scholar 

  4. J.C. Greenwood, Silicon in mechanical sensors. J. Phys., 21, 1988, 1114–1128.

    Google Scholar 

  5. K. Petersen, Dynamic micromechanics on silicon, techniques and devices. IEEE Tran. El. Dev., ED-25, 1978, 1241–1250.

    Google Scholar 

  6. G.L. Pearson, Deformation and fraction of small silicon crystals. Act. Metalurgica, 5, 1957, 187–191.

    Google Scholar 

  7. J. Wolf, Silicon Semiconductors Data. Pergamon Press, New York, 1969.

    Google Scholar 

  8. J. Wortman, R.A. Evans, Young’s modulus, shear modulus and Poisson’s ratio in silicon and germanium. J. Appl. Phys., 36, 1965, 153–156.

    Article  Google Scholar 

  9. J. Frühauf, E. Gärtner, E. Jänsch, Silicon as a plastic material. J. Micromech. Microeng., 9, 1999, 305–312.

    Article  Google Scholar 

  10. H.J. McSkimin, P. Andreatch, Elastic modulus of silicon vs. hydrostatic pressure at 25°C and 195.8°C. J. Appl. Phys., 35,7, 1964, 2161–2165.

    Article  Google Scholar 

  11. S.P. Nikanarov, Yu.A. Burenkov, A.V. Stepanov, Uprugije swojstwa kriemni. Fiz. Twierd.T iela, 13, 1971, 3001–3004.

    Google Scholar 

  12. X. Ding, W.H. Ko, J.M. Mansour, Residual stress and mechanical properties of boron doped p+ silicon films. Sensors and Actuators A, 21-23, 1990, 866–871.

    Article  Google Scholar 

  13. H.J. McSkimin, Measurement of elastic constants at low temperatures by means of ultrasonic waves-data for silicon and germanium single crystals and for fused silica. J. Appl. Phys., 24,8, 1953, 988–997.

    Article  Google Scholar 

  14. J.J. Hall, Electronic effects in elastic constants of n-type silicon. Phys. Rev., 161(3), 1967, 756–761.

    Article  Google Scholar 

  15. F. Maseeh, S.D. Senturia, Plastic deformation of highly doped silicon. Sensors and Actuators, A, 21-23, 1990, 861–865.

    Article  Google Scholar 

  16. W. Chu, Effect of oxidation on residual stress distribution through the thickness of p+ silicon films. Techn. Dig. IEEE Solid-State Sensors and Actuators Workshop, 1982, 90–93.

    Google Scholar 

  17. L. Csepregi, Micromechanics: a silicon microfabrication technology. Microelectronics Eng., 3, 1985, 221–234.

    Article  Google Scholar 

  18. M. Mehregany, Silicon microactuators, in: Advances in actuators, A. Dorey, J. Moore (eds.). IOP Publishing, 1995, 135–178.

    Google Scholar 

  19. X. Ding, W.H. Ko, Y. Niu, W. He, A study on silicon-diaphragm buckling. Proceed. IEEE Transducers, 1990, 128–131.

    Google Scholar 

  20. J. Bryzek, K. Petersen, J. Mallon, L. Christell, F. Pouhmaradi, Silicon sensors and microstructures. Nova Sensor, Fremont, CA, 1991, USA.

    Google Scholar 

  21. Special issue on three dimensional device structures IEEE Tran. El. Dev., ED-25, 10, 1975.

    Google Scholar 

  22. K.D. Wise, S.K. Clark, Diaphragm formation and pressure sensitivity in batch-fabricated silicon pressure sensor. Int. Electron. Dev. Meeting (IEDM), Techn. Dig., IEEE, 1978, 96–99.

    Google Scholar 

  23. A.I. Stoller, The etching of deep vertical patterns in silicon. RCA Review, 6, 1970, 271–275.

    Google Scholar 

  24. Special issue on solid-state sensors, actuators and interface electronics. IEEE Trans. El. Dev. ED-26, 12, 1979.

    Google Scholar 

  25. B. Puers, E. Peeters, W. Sansen, Wet and dry etching experience for sensor micromachining. J. Micromech. Microeng., 13, 1991, 443–446.

    Google Scholar 

  26. G. Delapierre, Micro-machining: A survey of the most commonly used processes. Sensors and Actuators A, 17, 1989, 123–138

    Article  Google Scholar 

  27. J.M. Crishal, A.L. Harrington, A selective etch for elemental silicon. J. Electrochem. Soc., 109, 1962, 71C.

    Google Scholar 

  28. R.M. Finne, D.L. Klein, A water amine complexing agent system for etching silicon. J. Electrochem. Soc., 114, 1967, 965–970.

    Google Scholar 

  29. H.J. Declerg, L. Gerzberg, J.D. Meindl, Optimization of the hydrazine water solution for anisotropic etching of silicon in integrated circuit technology. J. Electrochem. Soc., 122, 1979, 545–552.

    Article  Google Scholar 

  30. M. Mehregany, S.D. Senturia, Anisotropic etching of silicon in hydrazine. Sensors and Actuators A, 13,4, 1988, 375–390.

    Article  Google Scholar 

  31. Yong Ping Xu, Ruey Shing Huang, Anodic dissolution and passivation of silicon in hydrazine. J. Electrochem. Soc., 137, 1990, 948–953.

    Article  Google Scholar 

  32. J. C. Greenwood, Ethylene diamine-catechol-water mixture shows preferential etching of p-n junctions. J. Electrochem. Soc. Electrochem. Techn. Lett., 116,9, 1969, 1325–1326.

    Google Scholar 

  33. A. Reisman, M. Berkenblit, S.A. Chan, F.B. Kaufman, D.C. Green, The controlled etching of silicon in catalyzed ethylenodiamine-pyrocatechol-water solutions. J. Electrochem. Soc., 126, 1979, 1406–1415.

    Article  Google Scholar 

  34. A. Bough, Ethylenodiamine-pyrocatehol mixtures-water mixtures shows etching anomaly in boron-doped silicon. J. Electrochem. Soc., 118, 1971, 401.

    Google Scholar 

  35. N.F. Raley, Y. Sugiyama, T. van Duzer, (100) silicon etch-rate dependence on boron concentration in ethylene-diamine-pyrocatechol-water solutions. J. Electrochem. Soc., 131, 1984, 161–171.

    Article  Google Scholar 

  36. G. Kaminsky, Micromachining of silicon mechanical structures. J. Vac. Sci. Technol., B-3, 1985, 1015–1024.

    Google Scholar 

  37. H. Linde, L. Austin, Wet silicon etching with aqueous-amine gellates. J. Electrochem. Soc., 139, 1992, 1170–1174.

    Article  Google Scholar 

  38. U. Schnakenberg, W. Benecke, P. Lange, TMAH etchants for silicon micromachining. Tech. Digest, 6th Int. Conf. Solid St. Sensors and Actuators (Transducer 91) San Francisco CA, USA, 1991, 815–818.

    Google Scholar 

  39. A. Merlos, M.C. Acero, M.H. Bao, J. Bausells, J. Estere, TMAH/IPA anisotropic etching characteristic. Sensors and Actuators A, 37-38, 1993, 737–743.

    Article  Google Scholar 

  40. H. Linde, L. Austin, Catalytic control of anisotropic silicon etching. Sensors and Actuators A, 49, 1995, 181–185.

    Article  Google Scholar 

  41. A. Merlos, M.C. Acero, M.H. Bao, J. Bausells, J. Estere, A study of undercutting characteristics in the TMAH-IPA system. J. Micromech. Microeng., 2, 1992, 181–183.

    Article  Google Scholar 

  42. I. Zubel, M. Kramkowska, The effect of isopropyl alcohol on etching rates roughness of (100) Si surface etched in KOH and TMAH. Sensors and Actuators A, 93, 2001, 138–147.

    Article  Google Scholar 

  43. O. Tabata, R. Asahi, H. Funabashi, S. Sugiyama, Anisotropic etching of silicon in (CH3)4OH solutions. Tech. Digest, 6th Int. Conf. Solid St. Sensors and Actuators (Transducer 91) San Francisco CA, USA, 1991, 811–814.

    Google Scholar 

  44. P.J. Holmes, The Electrochemistry of Semiconductors, P.J. Holmes (ed.). Academic Press Ltd., London, 1962.

    Google Scholar 

  45. D.B. Lee, Anisotropic etching of silicon. J. Appl. Phys., 40, 1969, 4569–4574.

    Article  Google Scholar 

  46. J.B. Price, Anisotropic etching of silicon with KOH-H2O-isopropyl alcohol. In Semiconductor silicon. The Electrochemical Soc. Softbond Symposium Proceed, Series, Princetown, New York, USA, H.R. Huft, R.R. Burgess (eds.), 1973, 339–353.

    Google Scholar 

  47. K.E. Bean, Anisotropic etching of silicon. IEEE Tran. El. Dev., ED-25, 1978, 1185–1193.

    Google Scholar 

  48. E. Bassous, Fabrication of novel three dimensional microstructures by the anisotropic etching of (100) and (111) silicon. IEEE Tran. El. Dev., ED25, 1978, 1178–1185.

    Google Scholar 

  49. J.K. Kendall, Vertical etching of silicon at very high aspect ratios. Ann. Rev. Materials Scientific, 9, 1979, 373–378.

    Article  Google Scholar 

  50. W.H. Ko, D.G. Fleming, T.L. Poteat, Submicron accuracies in anisotropic etched silicon piece parts-a case study. In: Micromachining and Micropackaging of Transducers, C.D. Fung (ed.). Elsevier, 1985, 151–158.

    Google Scholar 

  51. H. Seidel, L. Csepregi, A. Hauberger, H. Baumgartel, Anisotropic etching of crystalline silicon in alkaline solutions (Part I). J. Electrochem. Soc., 137, 1990, 3612–3626.

    Article  Google Scholar 

  52. E. Herr, H. Baltes, KOH etch rates of high index planes in silicon. Sensors and Actuators A, 31, 1992, 283–287.

    Article  Google Scholar 

  53. H. Camon, Z. Moktadir, Atomic scale simulation of silicon etched in aqueous KOH solution. Sensor and Actuators A, 46-47, 1995, 25–28.

    Google Scholar 

  54. H.L. Offereins, K. Kuhl, H. Sandmaier, Methods of fabrication of convex corners in anisotropic etching of (100) silicon in aqueous KOH. Sensors and Actuators A, 25-27, 1991, 9–13.

    Google Scholar 

  55. I. Barycka, I. Zubel, Silicon anisotropic etching in KOH-isopropanol etchant. Sensors and Actuators A, 48, 1995, 229–238.

    Article  Google Scholar 

  56. E.D. Palik, H.F. Gray, P.B. Klein, A Raman study of etching silicon in aqueous KOH. J. Electrochem. Soc., 130, 1983, 956–959.

    Article  Google Scholar 

  57. U. Schnekenberg, W. Benecke, B. Löckel, S. Ullerich, P, Lange, NH4OH based etchants for silicon micromachining: influence of additives and stability of passivation layers. Sensors and Actuators A, 25-27., 1991, 1–7.

    Google Scholar 

  58. U. Schnekenberg, W. Benecke, B. Lóckel, NH4OH-based etchants for silicon micromachining. Sensors and Actuators A, 21-23, 1990, 1031–1035.

    Article  Google Scholar 

  59. Ch. Ju, P.J. Hesketh, Measurements of anisotropic etching of a single crystal silicon sphere in aqueous cesium hydroxide. Sensors and Actuators A, 33, 1992, 191–196.

    Article  Google Scholar 

  60. T. Wang, S. Surve, P.J. Hesketh, Anisotropic etching of silicon in rubidium hydroxide. J. Electrochem. Soc., 141(9), 1994, 2493–2497.

    Article  Google Scholar 

  61. M. Elwespoek, The form of the etch minima in wet chemical anisotropic etching of silicon. J. Micromech. Microeng., 6, 1996, 405–409.

    Article  Google Scholar 

  62. P. Allongue, V. Costa-Kieling, H. Gerischer, Etching of silicon in NaOH solutions. J. Electrochem. Soc., 140, 1993, 1009–1026.

    Article  Google Scholar 

  63. J. Dziuban, Microwave enhanced wet anisotropic etching of monocrystalline silicon. Proceed. Eurosensors XIII, 13rd Europ. Conf. on Solid-St. Transducers, September 12-15, den Haag, Holland, 1999, 337–338.

    Google Scholar 

  64. H. Linde, L. Austin, Catalytical control of anisotropic silicon etching. Sensors and Actuators A, 49, 1995, 181–187.

    Article  Google Scholar 

  65. C. Moldovan, R. Iosub, D. Dascaln, G. Nechifor, Anisotropic etching of silicon in a complexant redox alkaline system. Sensors and Actuators B, 58, 1999, 438–449.

    Article  Google Scholar 

  66. K. Sato, M. Shikida, T. Yamashiro, M. Tsukanawa, S. Ito, Characterization of anisotropic etching of single crystal silicon: surface roughening as function of crystallographic orientation. IEEE Workshop MEMS 98, January 25–29, Heidelberg, Germany, 201–206.

    Google Scholar 

  67. Ch. Merveille, Surface quality of (111) side-walls in KOH etched cavities. Sensors and Actuators A, 60, 1997, 2444–248.

    Article  Google Scholar 

  68. E.D. Palik, O.J. Glembocki, L. Heard jr, P.S. Burno, L. Tenerz, Etching roughness for (100) silicon surfaces in aqueous KOH. J. Appl. Phys., 70(6), 1991, 3291–3300.

    Article  Google Scholar 

  69. Y.K. Bhatnager, A. Nathan: On pyramidal pretrusions in anisotropic etching of (100) silicon. Sensors and Actuators A, 36, 1993, 233–240.

    Article  Google Scholar 

  70. S.A. Campbell, K. Cooper, S.N. Port, D.J. Schiffrin, Inhibition of pyramid formation in the etching of Si p (100) in aqueous potassium hydroxide-isopropanol. J. Micromech. Microeng., 5, 1995, 209–218.

    Article  Google Scholar 

  71. T.A. Kwa, R.F. Wolfenbuttel, Effect of solution contamination on etched silicon surfaces. J. Micromech. Microeng., 5, 1995, 95–97.

    Article  Google Scholar 

  72. C. Merveille, J. Weber, Surface quality of (111) side-walls in KOH solutions. Proceed. Eurosensors X, 10th Europ. Conf. on Solid-St. Transducers, Sept., 8—11, 1996, Leuven Belgium, 485–488.

    Google Scholar 

  73. E.D. Palik, V.M. Bermudez, O.J. Glembocki, Ellipsometric study of orientation-dependent etching of silicon in aqueous KOH. J. Electrochem. Soc., 132, 1985, 871–994.

    Article  Google Scholar 

  74. P.J. Hesketh, Ch. Ju, S. Gowda, E. Zanoria, S. Danyluk, Surface free energy model of silicon anisotropic etching. J. Electrochem. Soc., 140, 1993, 1080–1085.

    Article  Google Scholar 

  75. M. Elwenspoek, On the mechanism of anisotropic etching of silicon. J. Electrochem. Soc., 140, 1993, 2075–2080.

    Article  Google Scholar 

  76. C. Mihalcea, A. Hőlz, M. Kuhawara, J. Tominaga, E. Oesterschultze, N. Atada, Improved anisotropic deep etching in KOH solutions to fabricate highly speculative surfaces. Microel. Engineer., 57-58, 2001, 781–786.

    Google Scholar 

  77. I. Zubel, Three dimensional silicon structures anisotropic (wet) etching for microelectronic applications. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, Poland, 2004,.

    Google Scholar 

  78. I. Barycka, H. Teterycz, Z. Znamirowski, Sodium hydroxide solution shows selective etching of boron doped silicon. J. Electrochem. Soc., 126(2), 1979, 345–346.

    Article  Google Scholar 

  79. V. Lehmann, K. Miatui, D. Feijo, U. Gösele, Implanted carbon, an effective etch-stop in silicon. J. Electrochem. Soc., 138, 1991, L-3–L-4.

    Article  Google Scholar 

  80. M.C. Acero, J. Esteve, J. Montserrat, J. Bausells, A. Perez-Rodriguez, A. Romano-Rodriguez, J.R. Monante, Anisotropic etch-stop properties of nitrogen implanted silicon. Sensors and Actuators A, 45, 1994, 219–225.

    Article  Google Scholar 

  81. H. Seidel, L. Csepregi, A. Henberger, H. Baumgartel, Anisotropic etching of silicon in alkaline solutions (Part II). J. Electrochem. Soc., 137, 1990, 3626–3632.

    Article  Google Scholar 

  82. E.D Palik, J.W. Faust jr, H.F. Gray, R.F. Greene, Study of the etch-stop mechanism in silicon. J. Electrochem. Soc., 129, 1982, 2051–2059.

    Article  Google Scholar 

  83. E.D. Palik, V.M. Bermudez, O.J. Glembocki, Ellipsometric study of the etch stop mechanism in heavily doped silicon. J. Electrochem, Soc., 132, 1985, 135–141.

    Article  Google Scholar 

  84. E.D. Palik, V.M. Bermudez, O.J. Glembocki, Ellipsometric study of bias dependent etching and the etch-stop mechanism for silicon in aqueous KOH. In: Micromachining and Micropackaging of T ransducers, W.H. Ko, D.G. Fleming (eds.). Elsevier, 1985.

    Google Scholar 

  85. H.A. Waggener, Electrochemically controlled thinning of silicon. Bell. System Techn. J., 50, 1970, 473–475.

    Google Scholar 

  86. M.J.J. Theusninssen, J.A. Appels, W.H.C.G. Yerhuylen, Application of preferential electrochemical etching of silicon to semiconductor device technology. J. Electrochem. Soc., 117, 1970, 959–965.

    Google Scholar 

  87. H.J.A. von Dijk, J. de Jonge, Preparation of thin silicon crystals by electrochemical thinning of epitaxially grown structures. J. Electrochem. Soc., 117, 1970, 553–554.

    Google Scholar 

  88. R.L. Meck, Electrochemically thinned N/N+ epitaxial silicon method and application. J. Electrochem. Soc., 118, 1971, 1240–1246.

    Google Scholar 

  89. A.I. Stoller, R.F. Speers, S. Opresko, A new technique for etch thinning of silicon wafers. RCA Review, 1970, 265–270.

    Google Scholar 

  90. T.N. Jackson, M.A. Tischler, K.D. Wise, An electrochemical p-n junction etch-stop for the formation of silicon microstructures. IEEE Trans. El. Dev. EDL-2, 2, 1981, 44–45.

    Google Scholar 

  91. J.W. Faust Jr, E.D. Palik, Study of the orientation dependent etching and initial anodization of Si in aqueous KOH. J. Electrochem. Soc., 130, 1983, 1413–1420.

    Article  Google Scholar 

  92. J. Glembocki, R.E. Stahibush, M. Tomkiewicz, A bias-dependent etching of silicon in aqueous KOH. J. Electrochem. Soc., 132, 1985, 145–151.

    Article  Google Scholar 

  93. P.M. Sarro, A.W. van Herwaarden, Silicon cantilever beams fabricated by electrochemically controlled etching for sensor fabrication. J. Electrochem. Soc., 133, 1986, 1724–1728.

    Article  Google Scholar 

  94. R.L. Smith, B. Kloeck, N.F. de Roij, S.D. Collins, The potential dependence of silicon anisotropic etching in KOH in 60°C. J. Electroanal. Chem. and Interfacial Chem., 238, 1987, 103–113.

    Article  Google Scholar 

  95. M. Hirata, S. Suwanoro, H. Tanigawa, Diaphragm thickness control in silicon pressure sensors using an anodic oxidation etch stop. J. Electrochem. Soc., 134, 1987, 2037–2041.

    Article  Google Scholar 

  96. M. Hirata, K. Suzuki, H. Tanigawa, Silicon diaphragm pressure sensors fabricated by anodic oxidation etch-stop. Sensor and Actuators A, 13, 1988, 63–69.

    Article  Google Scholar 

  97. Y. Lindenen, L. Tenerz, B. Hök, Fabrication of three dimensional structures by means of doping selective etching (DSE). Sensors and Actuators A, 16, 1989, 67–81.

    Article  Google Scholar 

  98. B. Kloek, S.D. Collins, N.F. de Roij, R.L. Smith, Study of electrochemical etch-stop for high precision thickness control of silicon membranes. IEEE Trans. El. Dev., ED-36, 1989, 663.

    Article  Google Scholar 

  99. E.D. Palik, O.J. Glembocki, R.E. Stahibush, Fabrication and characterization of Si membranes. J. Electrochem. Soc., 135, 1988, 3126–3134.

    Article  Google Scholar 

  100. H. Seidel, The mechanism of anisotropic electrochemical silicon etching in alkaline solutions. Techn. Dig. 5th Int. Conf. Solid St. Sensors and Actuators (Transducers 90), Yokohama, Japan, 1990, 86–87.

    Google Scholar 

  101. H. Seidel, The mechanism of electrochemical anisotropic etching of silicon and its application. In: IntegratedMicromotion Systems, F. Harashima (ed.). Elsevier, 1990, 51–68.

    Google Scholar 

  102. D. Lapadatu, R. Puers, On the anodic passivation of silicon in aqueous KOH solutions. Sensor and Actuators A, 60, 1997, 191–196.

    Article  Google Scholar 

  103. G.K. Celler, L.E. Trimble, J. Frackoviak, C.W. Jergensen, R.R. Kola, A.E. Nivembre, G.R. Weber, Formation of monolithic masks for 0.25 mm X-Ray lithography. Appl. Phys. Lett., 59(24), 1991, 3105–3107.

    Article  Google Scholar 

  104. E.L. Demar, C.M.A. Ashruf, P.J. French, P.M. Sarro, Thickness of membranes fabricated with galvanic etch-stop: uniformity and reproducibility. Proceed. Eurosensors XII, 12th Europ. Conf. on Solid-St. Transducers, 13–16 Sept., Southampton, United Kingdom, M.N. White (ed.), IOP Series 1998, 3–6.

    Google Scholar 

  105. H. Teterycz, J. Dziuban, R. Walczak, Method of silicon etching. Patent application 353673, 29 April 2002.

    Google Scholar 

  106. J. Dziuban, Microwave enhanced wet anisotropic etching of monocrystalline silicon. Sensors and Actuators A, 85, 2000, 133–138.

    Article  Google Scholar 

  107. J. Dziuban, R. Parosa, E. Reszke, A means for wet anisotropic etching of mono-crystalline semiconductor material and a device implementing this means. PCT No WO 00/34993, 15 June 2000.

    Google Scholar 

  108. J. Dziuban, R. Walczak, Fast wet anisotropic etching process for deep micromachining of single crystal silicon. World Microtech. Cong. Proceed. MICRO., tec 2000, Expo 2000, Hannover, Germany, 609–613.

    Google Scholar 

  109. J. Dziuban, R. Walczak, Etching microwave silicon au][EMSi]-microwave enhanced fast deep anisotropic etching of silicon for micro-electromechanical systems. Sensors and Materials, 15(1), 2001, 41–55.

    Google Scholar 

  110. R. Walczak, J. Dziuban, Microwave enhanced wet anisotropic etching of silicon utilizing a memory effect of OH activation — a remote E2MSi process. Sensors and Actuators A, 116, 2004, 161–170.

    Article  Google Scholar 

  111. H.R. Robbins, B. Schwartz, Chemical etching of silicon — I. The system, HF, HNO3 and H2O, J. Electrochem. Soc., 106, 1959, 505–508.

    Google Scholar 

  112. H.R. Robbins, B. Schwartz, Chemical etching of silicon — II. The system, HF, HNO3, H2O and HC2C3O2, J. Electrochem. Soc., 107, 1960, 108–111.

    Google Scholar 

  113. B. Schwartz, H.R. Robbins, Chemical etching of silicon — III. A temperature study in the acid system, J. Electrochem. Soc., 108, 1961, 365–372.

    Google Scholar 

  114. B. Schwartz, H.R. Robbins, Chemical etching of silicon — IV. Etching technology, J. Electrochem. Soc., 123, 1976, 1903–1909.

    Article  Google Scholar 

  115. A. Bochenschuetz, W. Krusemark, K. Loeher, W. Mussinger, Activation energies in the chemical etching of semiconductors in HNO3-HF-CH3COOH. J. Electrochem. Soc., 1149), 1976, 970–973.

    Google Scholar 

  116. L. Nieradko, Microelectronic methods of modification of separation properties of micromechanical, capillary chromatographic columns. Thesis, The Wroclaw University of Technology, Wroclaw, Poland, 2001, 43–51

    Google Scholar 

  117. B. Puers, W. Sansen, Compensation structures for convex corner micromachining in silicon. Sensors and Actuators A, 21-23, 1990, 1036–1039.

    Article  Google Scholar 

  118. H.L. Offereins, H. Sandmaier, K. Maruscyk, K. Kuhl, A. Plettner, Compensating corner undercutting of (100) silicon in KOH. Sensors and Materials, 3, 1992, 127–144.

    Google Scholar 

  119. M.M. Abu-Zeid, Corner undercutting in anisotropically etched isolation contours. J. Electrochem. Soc., 131, 1984, 2138–2142.

    Article  Google Scholar 

  120. E.G. van Hal, Advanced packaging of ISFET S: design, encapsulation and bonding, chapter 5: Anisotropic etching of silicon in KOH and TMAH solutions. Thesis, 1994, 99–113.

    Google Scholar 

  121. M. Bao, Chr. Burrer, J. Estere, J. Baussels, S. Marco, Etching front control of <110> strips for corner compensation. Sensors and Actuators A, 37-38, 1993, 727–732.

    Article  Google Scholar 

  122. J. Dziuban, A. Górecka-Drzazga, I. Barycka, I. Zubel, Compensation of corners in bossed structures of pressure sensors. Proceedings of IVth Conf. COE 96, 13–16 May, Szczyrk, Poland, 1996, 174–177.

    Google Scholar 

  123. D. Zielke, J. Fruhauf, F. Röγler, Simulation of the orientation dependent etching of complex mask structure. Tech. Dig. 6th Micromechanics Europe Workshop MME 95, Copenhagen, Danmark, 3—5 Sept., 1995, 164–167.

    Google Scholar 

  124. I. Barycka, J. Dziuban, M. Kramkowska, I. Zubel, Compensation of convex corners in sensors with bossed structure etched in TMAH and TMAH/IPA solutions. Mat. SPIE, 4516, 2001, 56–65.

    Google Scholar 

  125. J. Frühauf, K. Trautman, J. Wittig, D. Zieike, A simulation tool for orientation dependent etching. J. Micromech. Microeng., 3, 1993, 113–115.

    Article  Google Scholar 

  126. D. Zielke, J. Frühauf, Determination of rates for orientation-dependent etching. Sensors and Actuators A, 48, 1995, 151–156.

    Article  Google Scholar 

  127. I. Barycka, I. Zubel, Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si (100) in various solutions. Sensors and Actuators A, 70, 1998, 250–259.

    Article  Google Scholar 

  128. G.K. Mayer, H. Loffereins, A. Sandmeier, K. Kuhl, Fabrication of non-underetched convex corners in anisotropic etching of (100) silicon in aqueous KOH with respect to novel micromechanical devices. J. Electrochem. Soc., 137, 1990, 3947–3951.

    Article  Google Scholar 

  129. E. Herr, H. Baltes, KOH etch rates of high-index planes from mechanically prepared silicon crystals. Tech. Dig. 6th Int. Conf. Solid St. Sensors and Actuators (Transducers 91), San Francisco, CA, USA, 24—28 June, 1995, 807–810.

    Google Scholar 

  130. Xin Xin Li, M. Bao, S. Shen, Maskless etching of three-dimensional silicon structures in KOH. Sensors and Actuators A, 57, 1996, 47–52.

    Article  Google Scholar 

  131. I. Zubel, Silicon anisotropic etching in alkaline solution II. On the possibility of spatial structures forming on the course of Si (100) anisotropic etching in KOH and KOH + IPA solutions. Sensors and Actuators A, 84, 2000, 116–125.

    Article  Google Scholar 

  132. O. Than, S. Büttgenbach, Simulation of anisotropic chemical etching of crystalline silicon using a cellular automata model. Sensors and Actuators A, 1995, 85–89.

    Google Scholar 

  133. J.H. Jerman, The fabrication and use of micromachined corrugated membrane. Sensors and Actuators A, 23, 1990, 998–992.

    Article  Google Scholar 

  134. D. Lapadatu, A. Pyka, J. Dziuban, R. Puers, Corrugated silicon nitride membranes on suspensions in micromachined silicon accelerometers. J. Micromech. Microeng., 6, 1996, 73–76.

    Article  Google Scholar 

  135. C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev., 94, 1954, 42–49.

    Article  Google Scholar 

  136. T. Pancewicz, R. Jachowicz, Z. Gniazdowski, Z. Ażgin, P. Kowalski, The empirical verification of the FEM model of semiconductor pressure sensor. Sensors and Actuators A, 76, 1999, 260–265.

    Article  Google Scholar 

  137. M. Bao, Micro Mechanical Transducers, Pressure Sensors, Accelerometers and Gyroscopes. Elsevier, 2000.

    Google Scholar 

  138. M. Bao, W. Qi, Y. Wang, Geometric design rules of four terminal gauge for pressure sensor. Sensors and Actuators A, 18, 1989, 149–156.

    Article  Google Scholar 

  139. N. Lu, L. Gerzberg, C. Lu, J. Meindl, Modeling and optimalization of monolithic polycrystalline silicon resistors. IEEE Trans. on Electron Dev., ED-28, 1981, 818–830.

    Google Scholar 

  140. J. Dziuban, A. Górecka-Drzazga, U. Lipowicz, Silicon pressure sensor for biomedicine applications. Proceed. Microelectronic 92, Warsaw, Poland, 1992, Proc. SPIE, Vol. 1783, 32–328.

    Google Scholar 

  141. J. Dziuban, A. Górecka-Drzazga, U. Lipowicz, W. Indyka, J. Wąsowski, Self-compensating piezoresistive pressure sensor. Sensors and Actuators A, 41-42, 1994, 368–374.

    Article  Google Scholar 

  142. J. Dziuban, A. Górecka-Drzazga, J. Wąsowski, U. Lipowicz, Simple method of compensation of off-set voltage of piezoresistive pressure sensors and its temperature drift (in Polish). Proceed. of COE 94, Zegrze, Poland, 1994, 235–238.

    Google Scholar 

  143. J. Thomas, R. Kühnlod, R. Schunpp, H. Ryssel, A silicon vibration sensor for tool state monitoring working in the high acceleration range. Sensors and Actuators, A, 85, 2000, 194–201.

    Article  Google Scholar 

  144. K. Ikeda, Silicon pressure sensor integrates resonant strain gage on diaphragm. Proceed. Transducers ’89 and Eurosensors III, the 5th Int. Conf. On Solid-St. Sensors and Actuators, Montreux, Switzerland, June 25—30, 1989, 100–101.

    Google Scholar 

  145. Catalogue of Yokogawa Co., The first and single digital pressure transducer. Yokogawa Austria GmbH, Franzensbruckestrasse 26, P.O.B 159, A 1021 Wien.

    Google Scholar 

  146. J. Dziuban, A. Górecka-Drzazga, U. Lipowicz, Silicon optical pressure sensor. Sensors and Actuators A, 32, 1992, 628–631.

    Article  Google Scholar 

  147. W. Lang, K. Kuehl, A micro-thin bolometer for radiation thermometry of ambient temperature. Proceed. Transducers ’89 and Eurosensors III, the 5th Int. Conf. On Solid-St. Sensors and Actuat. Montreux, Switzerland, June 25—30, 1989, 173.

    Google Scholar 

  148. G.A. Racine, Low temperature operating silicon bolometers for nuclear radiation detector. Proceed. Transducers ’89 and Eurosensors III, the 5th Int. Conf. On Solid-St. Sensors and Actuat. Montreux, Switzerland, June 25—30, 1989, 174–175.

    Google Scholar 

  149. A.W. Herwaarden, Floating-membrane thermal vacuum sensor. Sensors and Actuators A, 17, 1989, 259–267.

    Article  Google Scholar 

  150. J.S. Skie, P.K. Weng, Fabrication of micro-bolometer on silicon substrate by anisotropy etching technique. Proc. Transducers 91, CH 2817, 627–630.

    Google Scholar 

  151. P.B. Zou, J.T. Pang, Z.F. Wang, X. Qian, H.Q. Gong, M.K. Lim, Z.J. Li, Single chip fabrication of integrated fluid systems (IFS). Proceed. IEEE Workshop MEMS 98, Heidelberg, Germany, January 25—29, 1998, 448–453.

    Google Scholar 

  152. P. Krause, E. Obermeier, W. Wehl, Backshooter-a new smart micromachined single-chip inkjet print head. Proceed. Transducers 95, Eurosensors IX, Stockholm, Sweden June 25—29, 1995, 325–328.

    Google Scholar 

  153. D.J. Coe, M.G. Allem, B.L. Smith, A. Glecer, Addreasable micromachined jet arrays. Proceed. Transducers 95, Eurosensors IX, Stockholm, Sweden June 25—29, 1995, 329–331.

    Google Scholar 

  154. M. Alavi, S. Buttgenbach, A. Schumacher, H.J. Wagner, Fabrication of microchannels by laser machining and anisotropic etching of silicon. Sensors and Actuators A, 32, 1992, 299–302.

    Article  Google Scholar 

  155. M. Alavi, Th. Fabula, A. Schumacher, H.-J. Wagner, Monolithic microbridges in silicon using laser machining and anisotropic etching. Sensors and Actuators A, 37-38, 1993, 661–665.

    Article  Google Scholar 

  156. Y. Bäcklund, Micromechanics in optical systems — with focus on telecom systems. J. Micromech. Microeng., 7, 1997, 93–98.

    Article  Google Scholar 

  157. C. Strandman, Y. Bücklund, Passive and fixed alignment of devices using flexible silicon elements formed by selective etching. J. Micromech. Microeng., 8, 1998, 39–44M.

    Article  Google Scholar 

  158. Hoffmann, P. Kopka, T. Gross, E. Voges, Optical fiber switches based on full wafer silicon micromachining. J. Micromech. Microeng., 9, 1999, 151–155.

    Article  Google Scholar 

  159. Ch. Gorecki, Optical waveguides and silicon-based micromachined architecture. In: MEMS and MOEMS technology and applications, P. Rai-Choudhury (ed.). SPIE Press, 2000, 209–300.

    Google Scholar 

  160. M. Hoffmann, E. Voges, Bulk silicon micromachining for MEMS in optical communication systems. J. Micromech. Microeng., 12, 2002, 349–360.

    Article  Google Scholar 

  161. Ch. Gorecki, M. de Labachelerie, L. Thierry, The role of silicon micromachining in optical fiber sensing technologies. IEEE Sensors Journal, 3(1), 2003, 121–130.

    Article  Google Scholar 

  162. R.M. Bostockë, J.D. Collier, R. Jones, D.F. Moore, J.E. Townsend, Silicon nitride microchips for the kinematic location of optic fibres in silicon V-shaped grooves. J. Micromech. Microeng., 8, 1998, 343–360.

    Article  Google Scholar 

  163. M. de Labachelerie, N. Kaou, V. Armbruster, J.-C. Jeannot, P. Mollier, H. Porte, N. Devoldere, A micromachined connector for the coupling of optical waveguides and ribbon optical fibers. Sensors and Actuators A, 89, 2001, 36–42.

    Article  Google Scholar 

  164. J. Dziuban, A micromachined silicon accelerometer with a movable mercury ball of micrometer size. MST News Poland, 1996, nr 4, 9–11.

    Google Scholar 

  165. F. Krull, Nutzen der dritten Dimension. Technische Rundschau, No. 11, 1995.

    Google Scholar 

  166. T.S.J. Lammerink, Micro-liquid flow sensor. Sensors and Actuators A, 37-38, 1993, 45–50.

    Article  Google Scholar 

  167. S. Bouwstra, P. Kemna, R. Legtenberg, Thermally excited mass flow sensor. Sensors and Actuators A, 20, 1989, 213–223.

    Article  Google Scholar 

  168. M.A. Gajda, H. Ahmed, Applications of thermal sensors on membranes. Sensors and Actuators A, 49, 1995, 1–9.

    Article  Google Scholar 

  169. D. Maser, R. Lenggenhager, H. Baltes, Silicon gas flow sensor using industrial CMOS and bipolar IC technology. Sensors and Actuators A, 25-27, 1991, 577–581.

    Article  Google Scholar 

  170. J. Robadey, O. Paul, H. Baltes, Two-dimensional integrated gas flow sensors by CMOS IC technology. J. Micromech. Microeng., 1995, 243–250.

    Google Scholar 

  171. T. Laurell, L. Rosengren, A micromachined enzyme reactor in (110) oriented silicon. Sensors and Actuators B, 18-19, 1994, 614–617.

    Article  Google Scholar 

  172. T. Laurell, L. Rosengren, J. Drott, A micromachined glucose oxidase enzyme reactor. Proceed. μTAS 94 Workshop, Twente, 21—22 November, 1994, 227–231.

    Google Scholar 

  173. A. Manz, E. Verpoorte, B.E. Raymond, C.S. Eftenhauser, N. Burggraf, H.M. Widmer, μTAS: Miniaturized chemical analysis systems. Proceed. μTAS 94 Workshop, Twente, 21—22 November, 1994, 5–27.

    Google Scholar 

  174. S. Böhm, W. Olthuis, P. Bergveld, A μTAS based on microdialysis for on-line monitoring of critically relevant substances. Proceed. μTAS 94 Workshop, Twente, 21—22 November, 1994, 31–34.

    Google Scholar 

  175. I.K. Glasgow, H.Ch. Zeringue, D.J. Beebe, S.-J. Choi, J.T. Lyman, M.B. Wheeler, Individual embryo transport and retention on a chip. Proceed. μTAS 94 Workshop, Twente, 21—22 November, 1994, 199–206.

    Google Scholar 

  176. P. Dario, M.C. Carrozza, A. Benvenuto, A. Menciassi, Micro-systems in biomedical applications. J. Micromech. Microeng., 10, 2000, 235–244.

    Article  Google Scholar 

  177. T.B. Taylor, P.M. St. John, M. Albin, Micro-genetic analysis systems. Proceed. μTAS 98 Workshop, Banff, 13μ16 October, 1998, 261–266.

    Google Scholar 

  178. H. Andersson, A. Ahmadian, W. van der Wijngaart, P. Nilsson, P. Enoksson, M. Uhler, G. Stemme, Micromachined flow-through filter-chamber for solid state phase DNA analysis. Proceed. μTAS 2000 Conference Enschede, 14—15 May, 2000, 473–476.

    Google Scholar 

  179. S. Bargiel, A. Gorecka-Drzazga, J. Dziuban, P. Prokaryn, M. Chudy, A. Dybko, Z. Brzozka, Nanoliter spectrofluorometric detector for flow systems. Proceed. 17 European Conference on Solid-State Transducers Eurosensors XVII, Guimaraes, Portugal, 21—24 Sept., 2003, 394–395.

    Google Scholar 

  180. J. Roeraade, M. Stjemström, A. Emmer, E. Litborn, U. Lindberg, Nanochemistry and nanoseparations of biomolecules, H.M. Widmer, E. Verpoorte, S. Bernold (eds.). Anal. Meth. Instrum., Spec. Issue, μTAS 96, Basel 19—22 November, 1996, 34–38.

    Google Scholar 

  181. C. Grosjean, G. Lee. W. Hong, Y.C. Tai, C.M. Ho, Micro Balloon Actuators for Aerodynamic Control. Proceed, 11th Annual. Int. Workshop MEMS 98, January 25—29, 1998, Heidelberg, Germany, 166–171.

    Google Scholar 

  182. E. Valderrama, P. Garrido, P. Heiduschka, A. Harsch, W. Göpel, Microfabrication and characterization of microelectrode arrays for in-vivo nerve signal recording. Proceed. Transducers 95, Eurosensors IX, Stockholm, June 25—29, 1995, 63–66.

    Google Scholar 

  183. P. Dario, M. Cocco, G. Soldani, E. Valderrama, J.U. Meyer, T. Giesler, H.-J. Beutel, H. Scheithauer, M. Alavi, V. Bulker, Technology and fabrication of hybrid neural interfaces for the peripheral nervous system. Microsystem Technologies Berlin, Oct., 19—21, 1994, 417–426.

    Google Scholar 

  184. K. Najafi, K. Wise, A high-yield IC compatible multichannel neuraling array. IEEE Tran. El. Dev., ED-32,7, 1985, 1206–1211.

    Google Scholar 

  185. D.W. de Lima Monteiro, O. Akhzar-Mehr, P.M. Sarro, G. Vdovin, Single mask fabrication of aspherical optics using KOH anisotropic etching of silicon. Optic Express, 11(18), 2003, 2244–2252.

    Google Scholar 

  186. G. Vdovin, O. Akhzar-Mehr, P.M. Sarro, D.W. de Lima Monteiro, M.Y. Loktev, Arrays of spherical micromirrors and molded lenses fabricated with bulk micromachining. In: MEMS/MOEMS Advances in photonic communications, sensing, metrology, packaging and assembly, U. Behringer, B. Courtois, A.M. Khounsary, D.G. Uttamchandani (eds.). Proc. SPIE 4945, 2003, 107–111.

    Google Scholar 

  187. A. Görecka-Drzazga, J. Dziuban, U. Lipowicz, Plasma etch for micromechanics integrated (in Polish). Proceed. of IV Conf. ELTE 90, 11—14 Sept., 1990, Książ, Poland, 72–74.

    Google Scholar 

  188. H.V. Allen, S.C. Terry, J.W. Knutti, Understanding silicon accelerometers. Sensors, September 1989.

    Google Scholar 

  189. G. Stemme, Resonant silicon sensors. J. Micromech. Microeng., 1, 1991, 113–125.

    Article  Google Scholar 

  190. M. Tortonese, H. Yamada, R.C. Barret, C.F. Quate, Atomic force microscopy using a piezoresistive cantilever. Proceed. IEEE Transducers ’91, CH2817, 448–451.

    Google Scholar 

  191. C.J. Welham, J. Greenwood, M. Bertioli, A lateral resonant pressure sensor fabricated via fussion bonding, wafer thinning and reactive-ion-etching. Proceed. Eurosensors XII, Southhampton, 13—16 September, 1998, UK, IOP Sensor-Series, 353–356S.

    Google Scholar 

  192. Bouwstra, R. Laktenberg, H.A.C. Tilmans, Resonating micro-bridge mass flow sensor. Sensors and Actuators A, 21-23, 1990, 332–335.

    Google Scholar 

  193. H.P. Lang, F.M. Battiston, M.K. Baller, R. Berger, J.-P. Ramseyer, P. Fornaro, E. Meyer, H.-J. Günterodt, C. Andreali, J. Brugger, M. Despont, P. Vettiger, J.-H. Fabian, T. Mezzacasa, L. Scandella, Ch. Gerber, J.K. Gimzewski, An electronic nose based on a micromechanical cantilever array. Proceed. of μTAS 98 Workshop 1998, Banff, Canada, October, 13—16, 57–60.

    Google Scholar 

  194. K.E. Petersen, Silicon torsional scanning mirror. IBM J. Res. Dev., No 24, 1980, 631–637.

    Google Scholar 

  195. H. Kück, W. Doleschal, A. Gehner, W. Grundke, R. Mehler, J. Paufler, R. Zeltmann, G. Zimmer, Deformable mirror devices as faze modulating high resolution light valves. Sensors and Actuators A, 52-54, 1996, 536–541.

    Article  Google Scholar 

  196. J.B. Sampsell, The digital micromirror device and its application to projection displays. Proc. Transducers 93, Yokohama, Japan, 7—10 June 1993, 24–27.

    Google Scholar 

  197. B. Mischke, Mikromechanik. Radio Fernsehen Elektronik, 1988, 37,9.

    Google Scholar 

  198. J.C. Greenwood, Etched silicon vibration sensor. J. Phys. Sci. Instrum., 17, 1985, 680–683.

    Google Scholar 

  199. H.K. Trien, L. Ewe, W. Mokwa, M. Schwarz, B.J. Hosticka, Flexible silicon structures for a retina implant. IEEE Workshop MEMS 1998, January 25—29, Heidelberg, Germany, 515–519.

    Google Scholar 

  200. S. Kolnsberg, K. Stangel, D. Hammerschmidt, M. Schwarz, B.J. Hosticka, L. Ewe, H.K. Trieu, W. Mokwa, CMOS micro transceivers in ophthalmology. World Microtech. Cong. Proceed. MICRO. tec, 2000, Expo 2000, Hannover, Germany.

    Google Scholar 

  201. P. Mion, J. Kim, Feedback control of turbulence. Appl. Mech. Rev., 47(5-6), part 1—3, 1994.

    Google Scholar 

  202. W.H. Ko, The future of sensors and actuators systems. Sensors and Actuators A, 56, 1996, 193–197.

    Article  Google Scholar 

  203. M. Humayun, E. de Juan, G. Dagnielle, R. Greenberg, R. Propst, H. Phillips, Visual perception elicited by electrical simulation of the retina in blind humans. Arch. Ophtalmol., 114, 1996, 40–46.

    Google Scholar 

  204. A. Lal, R.M. White, Silicon microfabricated horns for power ultrasonics. Proceed. Transducers 95, Eurosensors IX, 8th Int. Conf. Solid St. Sensors and Actuators, June 25—29, Stockholm, Sweden, 1995, 405–408.

    Google Scholar 

  205. S. Charles, R. Williams, T.L. Poteat, Micromachined structures in ophthalmic microsurgery. Sensors and Actuators A, 21-23, 1990, 263–266.

    Article  Google Scholar 

  206. A. Górecka-Drzazga, J. Dziuban, Fabrication of silicon microtips. Metal/nonmetal Microsystems: physics, technology, applications, Polanica Zdr. 11—14 Sept., 1994. Proc. SPIE, Vol. 2780, 380–383.

    Google Scholar 

  207. A. Górecka-Drzazga, J. Dziuban, Technological aspects of FEA’s fabrication. Proceedings of 2nd Int. Workshop on Vacuum Microelectronics of 12th Int. Vacuum Microelectronic. Conf., July 6—9, July 11—13, 1999, Darmstadt-Wroclaw, 102–104.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Deep, Three-Dimensional Silicon Micromachining. In: Bonding in Microsystem Technology. Springer Series in Advanced Microelectronics, vol 24. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4589-1_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4589-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4578-3

  • Online ISBN: 978-1-4020-4589-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics