Magnetopause and Boundary Layer

  • J. De Keyser
  • M. W. Dunlop
  • C. J. Owen
  • B. U. Ö. Sonnerup
  • S. E. Haaland
  • A. Vaivads
  • G. Paschmann
  • R. Lundin
  • L. Rezeau
Part of the Space Sciences Series of ISSI book series (SSSI, volume 20)


Solar Wind Current Sheet Current Layer Dayside Magnetopause Cluster Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggson, T. L., N. C. Maynard, and P. J. Gambardella: 1983, ‘Electric field measurements at the magnetopause: Observation of large convective velocities at rotational magnetopause discontinuities’. jgr 88, 10000–10010.ADSGoogle Scholar
  2. André, M., A. Vaivads, S. C. Buchert, A. N. Fazakerley, and A. Lahiff: 2004, ‘Thin electron-scale layers at the magnetopause’. Geophys. Res. Lett. 31, 3803.Google Scholar
  3. André, M., R. Behlke, J.-E. Wahlund, A. Vaivads, A.-I. Eriksson, A. Tjulin, T. D. Carozzi, C. Cully, G. Gustafsson, D. Sundkvist, Y. Khotyaintsev, N. Cornilleau-Wehrlin, L. Rezeau, M. Maksimovic, E. Lucek, A. Balogh, M. W. Dunlop, P.-A. Lindqvist, F. Mozer, A. Pedersen, and A. Fazakerley: 2001, ‘Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause’. Ann. Geophys. 19, 1471–1481.ADSGoogle Scholar
  4. Balogh, A., C. M. Carr, M. H. Acuna, M. W. Dunlop, T. J. Beek, P. Brown, K.-H. Fornacon, E. Georgescu, K.-H. Glassmeier, J. Harris, G. Musmann, T. Oddy, and K. Schwingenschuh: 2001, ‘The Cluster magnetic field investigation: overview of in-flight performance and initial results’. Ann. Geophys. 19, 1207–1217.ADSGoogle Scholar
  5. Bauer, T. M., M. W. Dunlop, B. U. Sonnerup, N. Sckopke, A. N. Fazakerley, and A. V. Khrabrov: 2000, ‘Dual Spacecraft Determinations of Magnetopause Motion’. Geophys. Res. Lett. 27(13), 1835–1838.ADSGoogle Scholar
  6. Berchem, J. and C. T. Russell: 1982, ‘The thickness of the magnetopause current layer — ISEE 1 and 2 observations’. J. Geophys. Res. 87, 2108–2114.ADSGoogle Scholar
  7. Berchem, J. and C. T. Russell: 1984, ‘Flux transfer events on the magnetopause: spatial distribution and controlling factors’. J. Geophys. Res. 89, 6689–6703.ADSGoogle Scholar
  8. Bosqued, J.-M., T. D. Phan, I. Dandouras, C. P. Escoubet, H. Rème, A. Balogh, M. W. Dunlop, A. D., E. Amata, M.-B. Bavassano-Cattaneo, C. Carlson, and A. M. e. a. DiLellis: 2001, ‘Cluster Observations of the High-Latitude Magnetopause and Cusp: First Results from the CIS Ion Instruments’. Ann. Geophys. 19, 1545–1566.ADSGoogle Scholar
  9. Cahill, L. J. and P. G. Amazeen: 1963, ‘The Boundary of the Geomagnetic Field’. J. Geophys. Res. 68, 1835.ADSGoogle Scholar
  10. Carlson, C. W. and R. B. Torbert: 1980, ‘Solar wind ion injections in the morning auroral oval’. J. Geophys. Res. 85, 2903.ADSGoogle Scholar
  11. Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability. Clarendon, Oxford.zbMATHGoogle Scholar
  12. Chapman, S. and J. Bartels: 1940, ‘Theories of Magnetic Storms and Aurorae’. In: Geomagnetism, Volume II. Oxford: Clarendon Press, pp. 850–861.Google Scholar
  13. Chen, S.-H., M. G. Kivelson, J. T. Gosling, R. J. Walker, and A. J. Lazarus: 1993, ‘Anomalous Aspects of Magnetosheath Flow and of the Shape and Oscillations of the Magnetopause During an Interval af Strongly Northward Interplanetary Magnetic Field’. J. Geophys. Res. 98, 5727.ADSGoogle Scholar
  14. Cowley, S. W. H. and C. J. Owen: 1989, ‘A Simple Illustrative Model of Open Flux Tube Motion Over the Dayside Magnetopause’. Planet. Space Sci. 37, 1461.ADSGoogle Scholar
  15. De Keyser, J., F. Darrouzet, and M. Roth: 2002, ‘Trying to bring the Magnetopause to a Standstill’. Geophys. Res. Lett. 29, 10.1029/2002GL015001.Google Scholar
  16. De Keyser, J., G. Gustafsson, M. Roth, F. Darrouzet, M. Dunlop, H. Rème, A. Fazakerley, P. Décréau, and N. Cornilleau-Wehrlin: 2004a, ‘Reconstruction of the magnetopause and low latitude boundary layer topology using Cluster multi-point measurements’. Ann. Geophys. 22, 2381.ADSGoogle Scholar
  17. De Keyser, J. and M. Roth: 1997, ‘Equilibrium conditions for the tangential discontinuity magnetopause’. J. Geophys. Res. 102, 9513–9530.ADSGoogle Scholar
  18. De Keyser, J. and M. Roth: 2003, ‘Structural analysis of periodic surface waves on the magnetospheric boundary’. Planet. Space Sci. 51, 757–768.ADSGoogle Scholar
  19. De Keyser, J., M. Roth, M. W. Dunlop, H. Rème, C. J. Owen, and G. Paschmann: 2004b, ‘Empirical reconstruction and long-duration tracking of the magnetospheric boundary in single-and multispacecraft contexts’. Ann. Geophys. p. submitted.Google Scholar
  20. deHoffmann, F. and E. Teller: 1950, ‘Magneto-Hydrodynamic Shocks’. Phys. Rev. 80, 692.MathSciNetADSGoogle Scholar
  21. Drazin, P. G. and W. H. Reid: 1985, Hydromagnetic Stability. Cambridge University Press.Google Scholar
  22. Dungey, J.W.: 1955, ‘Electrodynamics of the outer atmosphere’. In: Proceedings of the ionosphere Conference. p. p. 225.Google Scholar
  23. Dungey, J. W.: 1961, ‘Interplanetary magnetic field and the auroral zones’. Phys. Rev. Lett. 6, 47.ADSGoogle Scholar
  24. Dunlop, M. W. and A. Balogh: 2004, ‘Magnetopause current as seen by Cluster’. Ann. Geophys. In press.Google Scholar
  25. Dunlop, M. W., A. Balogh, P. Cargill, R. C. Elphic, K.-H. Fornacon, E. Georgescu, F. Sedgemore-Schultess, and the FGM team: 2001, ‘Cluster observes the Earth’s magnetopause: Co-ordinated four-point magnetic field measurements’. Ann. Geophys. 19, 1449–1462.ADSGoogle Scholar
  26. Dunlop, M. W., A. Balogh, and K. H. Glassmeier: 2002a, ‘Four-point Cluster application of magnetic field analysis tools: The discontinuity analyzer’. J. Geophys. Res. 107(A11), 1385, doi:10.1029/2001JA0050089.Google Scholar
  27. Dunlop, M. W., A. Balogh, K. H. Glassmeier, and P. Robert: 2002b, ‘Four-point Cluster application of magnetic field analysis tools: The Curlometer’. J. Geophys. Res. 107(A11), 1384, doi:10.1029/2001JA0050088.Google Scholar
  28. Dunlop, M. W. and T. I. Woodward: 1998, ‘Discontinuity analysis: orientation and motion’. In: G. Paschmann and P. W. Daly (eds.): Analysis Methods for Multi-Spacecraft Data, ISSI SR-001. ESA Publications Division, p. 271.Google Scholar
  29. Dunlop, M. W. and T. I. Woodward: 1999, ‘Analysis of thick, non-planar boundaries using the discontinuity analyser’. Ann. Geophys. 17(8), 984–995.ADSGoogle Scholar
  30. Dunlop, M.W., T. I. Woodward, D. J. Southwood, K.-H. Glassmeier, and R. C. Elphic: 1997, ‘Merging 4 spacecraft data: concepts used for analysing discontinuities’. Adv. Space Res. 20, 1101.ADSGoogle Scholar
  31. Eastman, T. E.: 1979, The plasma boundary layer and magnetopause layer of the Earth’s magnetosphere. Univ. of Alaska, Fairbanks. Ph. D. thesis.Google Scholar
  32. Eastman, T. E., E.W. Hones, Jr., S. J. Bame, and J. R. Asbridge: 1976, ‘The Magnetospheric Boundary Layer: Site of Plasma, Momentum and Energy Transfer from the Magnetosheath into the Magnetosphere’. Geophys. Res. Lett. 3, 685.ADSGoogle Scholar
  33. Elphic, R. C.,W. Baumjohann, C. A. Cattell, H. Lühr, and M. F. Smith: 1994, ‘A search for upstream pressure pulses associated with flux-transfer events — an AMPTE/ISEE case-study’. J. Geophys. Res. 99, 13521.ADSGoogle Scholar
  34. Elphic, R. C., M. Lockwood, S. W. H. Cowley, and P. E. Sandholt: 1990, ‘Flux-transfer events at the magnetopause and in the ionosphere’. Geophys. Res. Lett. 17, 2241.ADSGoogle Scholar
  35. Elphic, R. C. and D. J. Southwood: 1987, ‘Simultaneous measurements of the magnetopause and flux-transfer events at widely separated sites by AMPTE UKS and ISEE-1 and ISEE-2’. J. Geophys. Res. 92, 13666.ADSGoogle Scholar
  36. Fairfield, D. H.: 1971, ‘Average and unusual locations of the Earths magnetopause and bow shock’. J. Geophys. Res. 76, 6700.ADSGoogle Scholar
  37. Fairfield, D. H., A. Otto, T. Mukai, S. Kokubun, R. P. Lepping, J. T. Steinberg, A. J. Lazarus, and T. Yamamoto: 2000, ‘GEOTAIL observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields’. J. Geophys. Res. 105, 21159.ADSGoogle Scholar
  38. Farrugia, C. J., F. T. Gratton, L. Bender, H. K. Biernat, N. V. Erkaev, J. M. Quinn, R. B. Torbert, and V. Dennisenko: 1998, ‘Charts of joint Kelvin-Helmholtz and Rayleigh-Taylor instabilities at the dayside magnetopause for strongly northward interplanetary magnetic field’. J. Geophys. Res. 103, 6703–6727.ADSGoogle Scholar
  39. Farrugia, C. J., R. P. Rijnbeek, M. A. Saunders, D. J. Southwood, D. J. Rodgers, M. F. Smith, C. P. Chaloner, D. S. Hall, P. J. Christiansen, and L. J. C. Woolliscroft: 1988, ‘A multi-instrument study of flux transfer event structure’. J. Geophys. Res. 93, 14,465–14,477.ADSGoogle Scholar
  40. Farrugia, C. T., F. T. Gratton, J. Contin, C. C. Cocheci, R. L. Arnoldy, K. W. Ogilvie, R. P. Lepping, G. N. Zastenker, M. N. Nozdrachev, A. Federov, J.-A. Sauvaud, J. T. Steinberg, and G. Rostoker: 2000, ‘Coordinated Wind, Interball/tail, and ground observations of Kelvin-Helmholtz waves at the near-tail, equatorial magnetopause at dusk: January 11, 1997’. J. Geophys. Res. 105, 7639–7667.ADSGoogle Scholar
  41. Ferraro, V. C.: 1952, ‘On the Theory of the First Phase of a Geomagnetic Storm in a New Illustrative Calculation Based on an Idealized (Plane not Cylindrical) Model Field Distribution’. J. Geophys. Res. 57, 15.ADSGoogle Scholar
  42. Fitzenreiter, R. J. and K. W. Ogilvie: 1995, ‘Kelvin-Helmholtz Instability at the Magnetopause: Observations’. In: P. Song, B. U. Ö. Sonnerup and M. F. Thomsen (eds.): Physics of the Magnetopause, Geophys. Monograph 90, Washington, DC, USA: American Geophysical Union, pp. 277–284.Google Scholar
  43. Goertz, C. K., E. Nielsen, A. Korth, K.-H. Glassmeier, C. Haldoupis, P. Hoeg, and D. Hayward: 1985, ‘Observations of a possible ground signature of flux transfer events’. J. Geophys. Res. 90, 4069–4078.ADSGoogle Scholar
  44. Gurnett, D. A., R. R. Anderson, B. T. Tsurutani, E. J. Smith, G. Paschmann, G. Haerendel, S. J. Bame, and C. T. Russell: 1979, ‘Plasma Wave Turbulence at the Magnetopause: Observations from ISEE’. J. Geophys. Res. 84, 7034.ADSGoogle Scholar
  45. Haaland, S., B. U. Ö. Sonnerup, M.W. Dunlop, A. Balogh, H. Hasegawa, B. Klecker, G. Paschmann, B. Lavraud, and H. Rème: 2004a, ‘Four-Spacecraft Determination of Magnetopause Orientation, Motion and Thickness: Comparison with Results from Single-Spacecraft Methods’. Ann. Geophys. 22, 1347.ADSGoogle Scholar
  46. Haaland, S., B. U. Ö. Sonnerup, E. Georgescu, B. Klecker, G. Paschmann, and A. Vaivads: 2004b, ‘Orientation and Motion of a Discontinuity from Cluster Curlometer Capability: Minimum Variance of Current Density’. Geophys. Res. Lett. 31(10).Google Scholar
  47. Haerendel, G., G. Paschmann, N. Sckopke, H. Rosenbauer, and P. C. Hedgecock: 1978, ‘The frontside boundary layer of the magnetosphere and the problem of reconnection’. J. Geophys. Res. 83, 3195.ADSGoogle Scholar
  48. Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro: 2004a, ‘Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices’. Nature 430, 755–758.ADSGoogle Scholar
  49. Hasegawa, H., B. U. Sonnerup, M.W. Dunlop, A. Balogh, S. E. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, and H. Rème: 2004b, ‘Reconstruction of Two-Dimensional Magnetopause Structures from Cluster Observations: Verification of Method’. Ann. Geophys. 22, 1251–1266.ADSGoogle Scholar
  50. Hasegawa, H., B. U. Sonnerup, B. Klecker, G. Paschmann, M. W. Dunlop, and H. Rème: 2004c, ‘Optimal Reconstruction of Magnetopause Structures from Multi-Spacecraft Data’. Submitted to Annales Geophysicae.Google Scholar
  51. Hau, L. and B. U. Sonnerup: 1999, ‘Two-Dimensional Coherent Structures in the Magnetopause: Recovery of Static Equilibria from Single-Spacecraft Data’. J. Geophys. Res. 104, 6899–6917.ADSGoogle Scholar
  52. Hau, L.-N. and B. U. O. Sonnerup: 1991, ‘Self-consistent gyroviscous fluid model of rotational discontinuities’. J. Geophys. Res. 96, 15767.ADSGoogle Scholar
  53. Hesse, M., J. Birn, and K. Schindler: 1990, ‘On the topology of flux-transfer events’. J. Geophys. Res. 95, 6549.ADSGoogle Scholar
  54. Hu, Q. and B. U. Sonnerup: 2003, ‘Reconstruction of Two-Dimensional Structures in the Magnetopause: Method Improvements’. J. Geophys. Res. 108(A1) 1011, doi: 10.1029/2002JA009323.Google Scholar
  55. Kan, J.: 1988, ‘A theory of patchy and intermittent reconnections for magnetospheric flux-transfer events’. J. Geophys. Res. 93, 5613.ADSGoogle Scholar
  56. Kawano, H., S. Kokubun, and K. Takahashi: 1992, ‘Survey of transient magnetic field events in the dayside magnetosphere’. J. Geophys. Res. 97, 10 677–10 692.ADSGoogle Scholar
  57. Kawano, H. and C. T. Russell: 1996, ‘Survey of flux transfer events observed with the ISEE 1 spacecraft: Rotational polarity and the source region’. J. Geophys. Res. 101, 27299.ADSGoogle Scholar
  58. Kawano, H. and C. T. Russell: 1997, ‘Survey of flux transfer events observed with the ISEE 1 spacecraft: Dependence on the interplanetary magnetic field’. J. Geophys. Res. 102, 11307.ADSGoogle Scholar
  59. Khrabrov, A. V. and B. U. Ö. Sonnerup: 1998a, ‘DeHoffmann-Teller Analysis’. In: G. Paschmann and P. W. Daly (eds.): Analysis Methods for Multi-Spacecraft Data, ISSI SR-001. ESA Publications Division, pp. 221–248.Google Scholar
  60. Khrabrov, A. V. and B. U. Ö. Sonnerup: 1998b, ‘Orientation and motion of current layers: Minimization of the Faraday residue’. Geophys. Res. Lett. 25, 2373–2376.ADSGoogle Scholar
  61. Kivelson, M. G. and S.-H. Chen: 1995, ‘The Magnetopause: Surface waves and Instabilities and their possible Dynamical Consequences’. In: P. Song, B. U. Ö. Sonnerup and M. F. Thomsen (eds.): Physics of the Magnetopause, Geophys. Monograph 90, Washington, DC, USA: American Geophysical Union, pp. 257–268.Google Scholar
  62. Kivelson, M. G. and C. T. Russell: 1995, Introduction to space physics. Cambridge; New York: Cambridge University Press, 1995.Google Scholar
  63. Klumpar, D. M., S. A. Fuselier, and E. G. Shelley: 1990, ‘Ion composition measurements within magnetospheric flux-transfer events’. Geophys. Res. Lett. 17, 2305.ADSGoogle Scholar
  64. Ku, H. C. and D. G. Sibeck: 1997, ‘Internal structure of flux transfer events produced by the onset of merging at a single X line’. J. Geophys. Res. 102, 2243.ADSGoogle Scholar
  65. Kuo, H., C. Russell, and G. Le: 1995, ‘Statistical studies of flux-transfer events’. J. Geophys. Res. 100, 3513.ADSGoogle Scholar
  66. Le, G., C. T. Russell, and H. Kuo: 1993, ‘Flux transfer events-spontaneous or driven?’. Geophys. Res. Lett. 20, 791.ADSGoogle Scholar
  67. Lee, L. C. and Z. F. Fu: 1985, ‘A Theory of Magnetic Flux Transfer at the Earth’s Magnetopause’. Geophys. Res. Lett. 12, 105–108.ADSGoogle Scholar
  68. Lee, L. C., Z. W. Ma, Z. F. Fu, and A. Otto: 1993, ‘Topology of magnetic-flux ropes and formation of fossil flux-transfer events and boundary-layer plasmas’. J. Geophys. Res. 98, 3943.ADSGoogle Scholar
  69. Lemaire, J.: 1977, ‘Impulsive penetration of filamentary plasma elements into the magnetospheres of the Earth and Jupiter’. Planet. Space Sci. 25, 887.ADSGoogle Scholar
  70. Lemaire, J. and M. Roth: 1991, ‘Non-steady-state solar wind-magnetosphere interaction’. Space Sci. Rev. 57, 59–108.ADSGoogle Scholar
  71. Lindqvist, P.-A. and F. S. Mozer: 1990, ‘The average tangential electric field at the noon magnetopause’. J. Geophys. Res. 95, 17137–17144.ADSGoogle Scholar
  72. Lockwood, M.: 1991, ‘Flux-transfer events at the dayside magnetopause-transient reconnection or magnetosheath dynamic pressure pulses?’. J. Geophys. Res. 96, 5497.ADSGoogle Scholar
  73. Lockwood, M., S.W. H. Cowley, P. E. Sandholt, and R. P. Lepping: 1990, ‘The ionospheric signatures of flux-transfer events and solar-wind dynamic pressure changes’. J. Geophys. Res. 95, 17113.ADSGoogle Scholar
  74. Lockwood, M., A. Fazakerley, H. J. Opgenoorth, J. Moen, A. P. van Eyken, B. Dunlop, M., J.-M., G. Lu, C. Cully, P. Eglitis, I. W. McCrea, M. A. Hapgood, M. N. Wild, R. Stamper, W. Denig, M. Taylor, J. A. Wild, G. Provan, O. Amm, K. Kauristie, T. Pulkkinen, A. Stromme, P. Prikryl, F. Pitout, A. Balogh, H. Réme, R. Behlke, T. Hansen, R. Greenwald, H. Frey, S. K. Morley, D. Alcayde, P.-L. Blelly, E. Donovan, M. Engebretson, M. Lester, J. Waterman, and M. F. Marcucci: 2001, ‘Coordinated Cluster and ground-based instrument observation of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures’. Ann. Geophys. 19, 1613–1640.ADSGoogle Scholar
  75. Lockwood, M. and M. N. Wild: 1993, ‘On the quasi-periodic nature of magnetopause flux-transfer events’. J. Geophys. Res. 98, 5935.ADSGoogle Scholar
  76. Louarn, P., A. Fedorov, E. Budnik, G. Fruit, J. A. Sauvaud, C. C. Harvey, I. Dandouras, H. Rème, M. C. Dunlop, and A. Balogh: 2004, ‘Cluster observations of complex 3D magnetic structures at the magnetopause’. Geophys. Res. Lett. 31, 19805.ADSGoogle Scholar
  77. Lucek, E. A., P. Cargill, M.W. Dunlop, L. M. Kistler, A. Balogh, W. Baumjohann, K.-H. Fornacon, E. Georgescu, and G. Haerendel: 2001, ‘Equator-S magnetopause crossings at high time resolution’. J. Geophys. Res. 106, 25409–25418.ADSGoogle Scholar
  78. Lundin, R., J.-A. Sauvaud, H. Rème, and A. B. et al.: 2003, ‘Evidence for impulsive solar wind plasma penetration through the dayside magnetopause’. Ann. Geophys. 21, 457–472.ADSGoogle Scholar
  79. Lundin, R., J. Woch, M. Yamauchi, and G. Marklund: 1995, ‘Boundary layer polarization and voltage in the 14 MLT region’. J. Geophys. Res. 100, 7587.ADSGoogle Scholar
  80. Marchaudon, A., J.-C. Cerisier, J.-M. Bosqued, M. W. Dunlop, J. A. Wild, P. M. E. Déecreau, M. Foerster, D. Fontaine, and H. Laakso: 2004, ‘Transient plasma injections in the dayside magnetosphere: one-to-one correlated observations by Cluster and by SuperDARN’. Ann. Geophys. 22, 141–158.ADSGoogle Scholar
  81. McWilliams, K. A., T. K. Yeoman, and G. Provan: 2000, ‘A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar’. Ann. Geophys. 18, 445–453.ADSGoogle Scholar
  82. Milan, S. E., M. Lester, S.W. H. Cowley, and M. Brittnacher: 2000, ‘Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause’. J. Geophys. Res. 105, 15,741–15,755.ADSGoogle Scholar
  83. Miura, A.: 1990, ‘Kelvin Helmholtz instability for supersonic shear flow at the magnetopause boundary’. Geophys. Res. Lett 17, 749.ADSGoogle Scholar
  84. Miura, A.: 1995, ‘Kelvin-Helmholtz Instability at the Magnetopause: Computer Simulations’. In: P. Song, B. U. Ö. Sonnerup and M. F. Thomsen (eds.): Physics of the Magnetopause, Geophys. Monograph 90, Washington, DC, USA: American Geophysical Union, pp 285–291.Google Scholar
  85. Moen, J., J. Holtet, A. Pedersen, B. Lybekk, K. Svenes, K. Oksavik, W. Denig, E. Lucek, F. Søraas, and M. André: 2001, ‘Cluster boundary layer measurements and optical observations at magnetically conjugate sites’. Ann. Geophys. 19, 1655–1668.ADSGoogle Scholar
  86. Mozer, F. S., S. D. Bale, and T. D. Phan: 2002, ‘Evidence of Diffusion Regions at a Subsolar Magnetopause Crossing’. Phys. Rev. Lett. 89, doi: 10.1103/Phys.Rev.Lett.89.015002.Google Scholar
  87. Nakamura, M. and M. Scholer: 2000, ‘Structure of the magnetopause reconnection layer and of flux transfer events: Ion kinetic effects’. J. Geophys. Res. 105, 23179.ADSGoogle Scholar
  88. Neudegg, D. A., S.W. H. Cowley, S. E. Milan, T. K. Yeoman, M. Lester, G. Provan, G. Haerendel, W. Baumjohann, B. Nikutowski, J. Büchner, U. Auster, K.-H. Fornacon, and E. Georgescu: 2000, ‘A survey of magnetopause FTEs and associated flow bursts in the polar ionosphere’. Ann. Geophys. 18, 416–435.ADSGoogle Scholar
  89. Neudegg, D. A., T. K. Yeoman, S. W. H. Cowley, G. Provan, G. Haerendel, W. Baumjohann, U. Auster, K.-H. Fornacon, E. Georgescu, and C. J. Owen: 1999, ‘A flux transfer event observed at the magnetopause by the Equator-S spacecraft and in the ionosphere by the CUTLASS HF radar’. Ann. Geophys. 17, 707–711.ADSGoogle Scholar
  90. Nykyri, K. and A. Otto: 2001, ‘Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices’. Geophys. Res. Lett. 28, 3565.ADSGoogle Scholar
  91. Ogilvie, K. W. and R. J. Fitzenreiter: 1989, ‘The Kelvin-Helmholtz instability at the magnetopause and the inner boundary layer surface’. J. Geophys. Res. 94, 15113–15123.ADSGoogle Scholar
  92. Olson, W. P. and K. A. Pfitzer: 1985, ‘Magnetospheric responses to the gradient drift entry of solar wind plasma’. J. Geophys. Res. 90, 10823.ADSGoogle Scholar
  93. Otto, A. and D. H. Fairfield: 2000, ‘Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with GEOTAIL observations’. J. Geophys. Res. 105, 21175.ADSGoogle Scholar
  94. Owen, C. J., M. W. Dunlop, A. N. Fazakerley, J.-M. Bosqued, J. P. Dewhurst, R. C. Fear, S. A. Fuselier, A. Balogh, and H. Rème: 2004a, ‘Cluster observations of ‘crater’ flux transfer events at the dayside high-latitude magnetopause’. Ann. Geophys. Submitted.Google Scholar
  95. Owen, C. J., A. N. Fazakerley, P. J. Carter, A. J. Coates, I. C. Krauklis, S. Szita, M. G. G. T. Taylor, P. Travnicek, G. Watson, R. J. Wilson, A. Balogh, and M. W. Dunlop: 2001, ‘CLUSTER PEACE Observations of Electrons During Magnetospheric Flux Transfer Events’. Ann. Geophys. 19, 1509.ADSGoogle Scholar
  96. Owen, C. J., R. C. Fear, A. N. Fazakerley, M. W. Dunlop, and A. Balogh: 2005, ‘Simultaneous Cluster observations of flux transfer events both up-and downstream of the magnetopause’. Ann. Geophys. Submitted.Google Scholar
  97. Owen, C. J., M. G. G. T. Taylor, I. C. Krauklis, A. N. Fazakerley, M.W. Dunlop, and J.-M. Bosqued: 2004b, ‘Cluster observations of surface waves on the dawn flank magnetopause’. Ann. Geophys. 22, 971.ADSGoogle Scholar
  98. Paschmann, G., S. Haaland, B. U. Ö. Sonnerup, E. Georgescu, B. Klecker, A. Vaivads, H. Réme, T. D. Phan, and H. Hasegawa: 2004, ‘Characteristics of the near-tail dawn magnetopause and boundary layer’. Ann. Geophys. p. submitted.Google Scholar
  99. Paschmann, G., G. Haerendel, I. Papamastorakis, N. Sckopke, S. J. Bame, J. T. Gosling, and C. T. Russell: 1982, ‘Plasma and magnetic-field characteristics of magnetic-flux transfer events’. J. Geophys. Res. 87, 2159.ADSGoogle Scholar
  100. Paschmann, G., B. U. Sonnerup, I. Papamastorakis, N. Sckopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, C. T. Russell, and R. C. Elphic: 1979, ‘Plasma Acceleration at the Earth’s Magnetopause: Evidence for Reconnection’. Nature 282, 243.ADSGoogle Scholar
  101. Paschmann, G., B. U. Ö. Sonnerup, I. Papamastorakis, W. Baumjohann, N. Sckopke, and H. Lühr: 1990, ‘The magnetopause and boundary layer for small magnetic shear: Convection electric fields and reconnection’. Geophys. Res. Lett. 17, 1829–1832.ADSGoogle Scholar
  102. Phan, T., M. W. Dunlop, G. Paschmann, B. Klecker, J.-M. Bosqued, H. Rème, A. Balogh, C. Twitty, F. S. Mozer, C.W. Carlson, C. Mouikis, and L. M. Kistler: 2004, ‘Cluster Observations of Continuous Reconnection at the Magnetopause under Steady Interplanetary Magnetic Field Conditions’. Ann. Geophys. in press.Google Scholar
  103. Phan, T. D., C. P. Escoubet, L. Rezeau, R. Treumann, A. Vaivads, G. Paschmann, S. A. Fuselier, D. Attié, B. Rogers, and B. U. Ö. Sonnerup: 2005, ‘Magnetopause Processes’. Space Sci. Rev. this issue.Google Scholar
  104. Phan, T. D. and G. Paschmann: 1996, ‘Low-latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion’. J. Geophys. Res. 101, 7801–7815.ADSGoogle Scholar
  105. Pinnock, M., A. S. Rodger, J. R. Dudeney, K. B. Baker, P. T. Newell, R. A. Greenwald, and M. E. Greenspan: 1993, ‘Observations of an enhanced convection channel in the cusp ionosphere’. J. Geophys. Res. 98, 3767–3776.ADSGoogle Scholar
  106. Pinnock, M., A. S. Rodger, J. R. Dudeney, R. A. Greenwald, K. B. Baker, and J. M. Ruohoniemi: 1991, ‘An ionospheric signature of possible enhanced magnetic field merging on the dayside magnetopause’. J. Atmos. Terr. Phys. 53, 201–212.ADSGoogle Scholar
  107. Pinnock, M., A. S. Rodger, J. R. Dudeney, F. Rich, and K. B. Baker: 1995, ‘High spatial and temporal resolution observations of the ionospheric cusp’. Ann. Geophys. 13, 919–925.ADSGoogle Scholar
  108. Pritchett, P. L. and F. V. Coroniti: 2004, ‘Three-dimensional collisionless magnetic reconnection in the presence of a guide field’. J. Geophys. Res. 109, 1220.Google Scholar
  109. Provan, G. and T. K. Yeoman: 1999, ‘Statistical observations of the MLT, latitude and size of pulsed ionospheric flows with the CUTLASS Finland radar’. Ann. Geophys. 17, 855–867.ADSGoogle Scholar
  110. Provan, G., T. K. Yeoman, and S. W. H. Cowley: 1999, ‘The influence of the IMF By component on the location of pulsed flows in the dayside ionosphere observed by an HF radar’. Geophys. Res. Lett. 26, 521–524.ADSGoogle Scholar
  111. Provan, G., T. K. Yeoman, and S. E. Milan: 1998, ‘CUTLASS Finland radar observations of the ionospheric signatures of flux transfer events and the resulting plasma flows’. Ann. Geophys. 16, 1411.ADSGoogle Scholar
  112. Pu, Z.-P. and M. G. Kivelson: 1983a, ‘Kelvin-Helmholtz instability at the magnetopause: Energy flux into the magnetosphere’. J. Geophys. Res. 88, 853–861.ADSGoogle Scholar
  113. Pu, Z.-P. and M. G. Kivelson: 1983b, ‘Kelvin-Helmholtz instability at the magnetopause: Solution for compressible plasma’. J. Geophys. Res. 88, 841–852.ADSGoogle Scholar
  114. Pu, Z. Y., Q. G. Zong, T. Fritz, Z. Xiao, Y. Huang, S. Y. Fu, Q. Q. Shi, M. W. Dunlop, K.-H. Glassmeier, A. Balogh, P. Daly, J. B. Cao, Z. X. Liu, H. Rème, and I. Dandouras: 2003, ‘Multiple Flux Rope Events at the High-latitude Magnetopause: Cluster/Rapid Observation on January 26, 2001’. Ann. Geophys. in press.Google Scholar
  115. Rijnbeek, R. P., S.W. H. Cowley, D. J. Southwood, and C. T. Russell: 1982, ‘Observations of reverse polarity flux-transfer events at the earths dayside magnetopause’. Nature 300, 23.ADSGoogle Scholar
  116. Rijnbeek, R. P., S. W. H. Cowley, D. J. Southwood, and C. T. Russell: 1984, ‘A survey of dayside flux-transfer events observed by ISEE-1 and ISEE-2 magnetometers’. J. Geophys. Res. 89, 786.ADSGoogle Scholar
  117. Robert, P., A. Roux, D. Fontaine, P. Canu, Le Contel, S. Perraut, N. Cornilleau-Wehrlin, M. W. Dunlop, A. Balogh, K.-H. Glassmeier, J.-M. Bosqued, A. Fazakerley, R. Behlke, and P. Décréau: 2002, ‘Cluster observations of a flux transfer event (FTE)’. In: COSPAR, Plenary Meeting.Google Scholar
  118. Roth, M., J. De Keyser, and M. M. Kuznetsova: 1996, ‘Vlasov Theory of the Equilibrium Structure of Tangential Discontinuities in Space Plasmas’. Space Sci. Rev. 76, 251–317.ADSGoogle Scholar
  119. Russell, C. T. and R. C. Elphic: 1978, ‘Initial ISEE magnetometer results: Magnetopause observations’. Space Sci. Rev. 22, 681–715.ADSGoogle Scholar
  120. Russell, C. T., G. Le, and H. Kuo: 1995, ‘The occurrence rate of flux transfer events’. Adv. Space Res. 18, 197–205.ADSGoogle Scholar
  121. Russell, C. T., M. M. Mellott, E. J. Smith, and J. H. King: 1983, ‘Multiple observations of interplanetary shocks: four spacecraft determination of shock normals’. J. Geophys. Res. 88, 4739–4748.ADSGoogle Scholar
  122. Scholer, M.: 1988, ‘Magnetic flux transfer at the magnetopause based on single X-line bursty reconnection’. Geophys. Res. Lett. 15, 291–294.ADSGoogle Scholar
  123. Scholer, M.: 1995, ‘Models of Flux Transfer Events’. In: P. Song, B. U. Ö. Sonnerup, and M. F. Thomsen (eds.): Physics of the Magnetopause, Geophys. Monograph 90, Washington, DC, USA: American Geophysical Union, pp. 235–245.Google Scholar
  124. Schwartz, S. J.: 1998, ‘Shock and Discontinuity Normals, Mach Numbers, and Related Parameters’. In: G. Paschmann and P. W. Daly (eds.): Analysis Methods for Multi-Spacecraft Data, ISSI SR-001. ESA Publications Division, pp. 249–270.Google Scholar
  125. Sckopke, N., G. Paschmann, G. Haerendel, B. U. Ö. Sonnerup, S. J. Bame, T. G. Forbes, E. W. Hones, and C. T. Russell: 1981, ‘Structure of the low-latitude boundary layer’. J. Geophys. Res. 86(15), 2099.ADSGoogle Scholar
  126. Seon, J., L. A. Frank, A. J. Lazarus, and R. P. Lepping: 1995, ‘Surface waves on the tailward flanks of the Earth’s magnetopause’. J. Geophys. Res. 100, 11,907–11,922.ADSGoogle Scholar
  127. Sestero, A.: 1966, ‘Vlasov equation study of plasma motion across magnetic fields’. Phys. Fluids 9, 2006.Google Scholar
  128. Shay, M. A., J. F. Drake, M. Swisdak, W. Dorland, and B. N. Rogers: 2003, ‘Inherently three dimensional magnetic reconnection: A mechanism for bursty bulk flows?’. Geophys. Res. Lett. 30, 1345, doi:10.1029/2002GL016267.ADSGoogle Scholar
  129. Sibeck, D. G.: 1990, ‘A Model for the Transient Magnetospheric Response to Sudden Solar Wind Dynamic Pressure Variations’. J. Geophys. Res. 95, 3755–3771.ADSGoogle Scholar
  130. Sibeck, D. G.: 1992, ‘Transient events in the outer magnetosphere-boundary waves or flux-transfer events?’. J. Geophys. Res. 97, 4009.ADSGoogle Scholar
  131. Sibeck, D. G., R. E. Lopez, and E. C. Roelof: 1991, ‘Solar wind control of the magnetopause shape, location and motion’. J. Geophys. Res. 96, 5489.ADSGoogle Scholar
  132. Sibeck, D. G., L. Prech, J. Safrankova, and Z. Nemecek: 2000, ‘Two-point measurements of the magnetopause: Interball observations’. J. Geophys. Res. 105, 237–244.ADSGoogle Scholar
  133. Sibeck, D. G. and M. F. Smith: 1992, ‘Magnetospheric plasma flows associated with boundary waves and flux transfer events’. Geophys. Res. Lett. 19, 1903–1906.ADSGoogle Scholar
  134. Smith, M. F. and C. J. Owen: 1992, ‘Temperature anisotropies in a magnetospheric FTE’. Geophys. Res. Lett. 19, 1907.ADSGoogle Scholar
  135. Song, P., G. Le, and C. T. Russell: 1994, ‘Observational differences between flux-transfer events and surface-waves at the magnetopause’. J. Geophys. Res. 99, 2309.ADSGoogle Scholar
  136. Sonnerup, B. U. and L. J. Cahill, Jr.: 1967, ‘Magnetopause Structure and Attitude from Explorer 12 Observations’. J. Geophys. Res. 72, 171.ADSGoogle Scholar
  137. Sonnerup, B. U. O.: 1980, ‘Theory of the low-latitude boundary layer’. J. Geophys. Res. 85(14), 2017.ADSGoogle Scholar
  138. Sonnerup, B. U. Ö. and M. Guo: 1996, ‘Magnetopause Transects’. Geophys. Res. Lett. 23, 3679–3682.ADSGoogle Scholar
  139. Sonnerup, B. U. Ö., S. Haaland, G. Paschmann, B. Lavraud, and M. W. Dunlop: 2004a, ‘Orientation and Motion of a Discontinuity from Single-spacecraft Measurements of Plasma Velocity and Density: Minimum Massflux Residue’. J. Geophys. Res. 109, A03221, doi:10.1029/2003JA010230.Google Scholar
  140. Sonnerup, B. U. Ö., H. Hasegawa, and G. Paschmann: 2004b, ‘Anatomy of a flux transfer event seen by Cluster’. Geophys. Res. Lett. 31 L11803. doi:10.1029/2004GL020134.ADSGoogle Scholar
  141. Sonnerup, B. U. Ö. and M. Scheible: 1998, ‘Minimum and Maximum Variance Analysis’. In: G. Paschmann and P. W. Daly (eds.): Analysis Methods for Multi-Spacecraft Data, ISSI SR-001. ESA Publications Division, pp. 185–220.Google Scholar
  142. Southwood, D. J.: 1968, ‘The hydromagnetic stability of the magnetospheric boundary’. Planet. Space Sci. 16, 587.ADSGoogle Scholar
  143. Southwood, D. J.: 1987, ‘The ionospheric signature of flux-transfer events’. J. Geophys. Res. 92, 3207.ADSGoogle Scholar
  144. Southwood, D. J. and W. J. Hughes: 1983, ‘Theory of hydromagnetic waves in the magnetosphere’. Space Sci. Rev. 35, 301–366.ADSGoogle Scholar
  145. Southwood, D. J., M. A. Saunders, M. W. Dunlop, W. A. C. Mierjedrzejowicz, and R. P. Rijnbeek: 1986, ‘A survey of flux-transfer events recorded by the UKS spacecraft magnetometer’. Planet. Space Sci. 34, 1349.ADSGoogle Scholar
  146. Terasawa, T., H. Kawano, I. Shinohara, T. Mukai, Y. Saito, M. Hoshino, A. Nishida, S. Machida, T. Nagai, T. Yamamota, and S. Kokubun: 1996, ‘On the Determination of a Moving MHD Structure: Minimization of the Residue of Integrated Faraday’s Equation’. J. Geomagn. Geoelectr. 48, 603–614.Google Scholar
  147. Thomsen, M. F., J. A. Stansberry, S. J. Bame, S. A. Fuselier, and J. T. Gosling: 1987, ‘Ion and electron velocity distributions within flux-transfer events’. J. Geophys. Res. 92, 12127.ADSGoogle Scholar
  148. Thorolfsson, A., J.-C. Cerisier, M. Lockwood, P. E. Sandholt, C. Senior, and M. Lester: 2000, ‘Simultaneous optical and radar signatures of poleward-moving auroral forms’. Ann. Geophys. 18, 1054–1066.ADSGoogle Scholar
  149. Vaivads, A., M. André, S. Buchert, J.-E. Wahlund, A. Fazakerley, and N. Cornilleau-Wehrlin: 2004, ‘Cluster observations of lower hybrid turbulence within thin layers at the magnetopause’. Geophys. Res. Lett. 31, L0380H. doi:10.1029/2003GL018142.Google Scholar
  150. Wild, J. A., S.W. H. Cowley, J. A. Davies, H. Khan, S. E. Milan, G. Provan, T. K. Yeoman, A. Balogh, M. W. Dunlop, K.-H. Fornacon, and E. Georgescu: 2001, ‘First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars’. Ann. Geophys. 19, 1491–1508.ADSGoogle Scholar
  151. Wild, J. A., S. E. Milan, S.W. H. Cowley, M.W. Dunlop, C. J. Owen, J. M. Bosqued, M. G. G. T. Taylor, J. A. Davies, M. Lester, N. Sato, A. S. Yukimatu, A. N. Fazakerley, A. Balogh, and H. Rème: 2003, ‘Coordinated interhemispheric SuperDARN radar observations of the ionospheric response to flux transfer events observed by the Cluster spacecraft at the high-latitude magnetopause’. Ann. Geophys. 21, 1807–1826.ADSGoogle Scholar
  152. Woch, J. and R. Lundin: 1992, ‘Signatures of transient boundary layer processes observed with Viking’. J. Geophys. Res. 97, 1431.ADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. De Keyser
    • 1
  • M. W. Dunlop
    • 2
  • C. J. Owen
    • 3
  • B. U. Ö. Sonnerup
    • 4
  • S. E. Haaland
    • 5
  • A. Vaivads
    • 6
  • G. Paschmann
    • 7
  • R. Lundin
    • 8
  • L. Rezeau
    • 9
  1. 1.Belgian Institute for Space AeronomyBrusselsBelgium
  2. 2.Rutherford Appleton Laboratory, Chilton, DidcotSpace Science DivisionOxfordshireUK
  3. 3.Mullard Space Science LaboratoryHolmbury St. Mary, DorkingSurreyUK
  4. 4.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  5. 5.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany
  6. 6.Swedish Institute of Space PhysicsUppsalaSweden
  7. 7.International Space Science InstituteBernSwitzerland
  8. 8.Swedish Institute of Space PhysicsKirunaSweden
  9. 9.CETP/IPSL/UPMCVélizyFrance

Personalised recommendations