Advertisement

Quasi-perpendicular Shock Structure and Processes

  • S. D. Bale
  • M. A. Balikhin
  • T. S. Horbury
  • V. V. Krasnoselskikh
  • H. Kucharek
  • E. Möbius
  • S. N. Walker
  • A. Balogh
  • D. Burgess
  • B. Lembège
  • E. A. Lucek
  • M. Scholer
  • S. J. Schwartz
  • M. F. Thomsen
Part of the Space Sciences Series of ISSI book series (SSSI, volume 20)

Keywords

Solar Wind Mach Number Shock Front Shock Structure Collisionless Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asbridge, J. R., S. J. Bame, and I. B. Strong: 1968, ‘Outward flow of protons from the Earth’s bow shock’. J. Geophys. Res. 73(12), 5777.ADSCrossRefGoogle Scholar
  2. Bagenal, F., J. W. Belcher, E. C. Sittler, Jr., and R. P. Lepping: 1987, ‘The Uranian Bow Shock: Voyager 2 Inbound Observations of a High Mach Number Shock’. J. Geophys. Res. 92, 8603.ADSCrossRefGoogle Scholar
  3. Bale, S. D., F. S. Mozer, and T. S. Horbury: 2003, ‘Density-transition scale at quasiperpendicular collisionless shocks’. Physical Review Letters 91(26), 265004.CrossRefADSGoogle Scholar
  4. Balikhin, M., M. Gedalin, and A. Petrukovich: 1995, ‘The scales in quasiperpendicular shocks’. Adv. Space. Res. 15, 247.CrossRefADSGoogle Scholar
  5. Balikhin, M., V. Krasnosel’skikh, and M. Gedalin: 1993, ‘New mechanism for heating in shocks’. Phys. Rev. Lett. 70, 1259.CrossRefADSGoogle Scholar
  6. Balikhin, M. A., M. Nozdrachev, M. Dunlop, V. Krasnosel’skikh, S. N. Walker, H. S. K. Alleyne, V. Formisano, M. André, A. Balogh, A. Eriksson, and K. Yearby: 2002, ‘Observation of the terrestrial bow shock in quasi-electrostatic sub-shock regime’. J. Geophys. Res. 107, 1155, doi: 1029/2001JA000327.CrossRefGoogle Scholar
  7. Bame, S. J., J. R. Asbridge, W. C. Feldman, J. T. Gosling, G. Paschmann, and N. Sckopke: 1980, ‘Deceleration of the solar wind upstream from the Earth’s bow shock and the origin of diffuse upstream ions’. J. Geophys. Res. 85(14), 2981–2990.ADSCrossRefGoogle Scholar
  8. Bonifazi, C. and G. Moreno: 1981, ‘Reflected and diffuse ions backstreaming from the earth’s bow shock. I Basic properties’. J. Geophys. Res. 86(15), 4397–4413.ADSCrossRefGoogle Scholar
  9. Burgess, D.: 1987, ‘Shock drift acceleration at low energies’. J. Geophys. Res. 92(11), 1119–1130.ADSCrossRefGoogle Scholar
  10. Burgess, D.: 1987, ‘Simulations of backstreaming ion beams formed at oblique shocks by direct reflection’. Ann. Geophys. 5, 133–145.ADSGoogle Scholar
  11. Burgess, D.: 1989, ‘Alpha particles in field-aligned beams upstream of the bow shock-Simulations’. Geophys. Res. Lett. 16, 163–166.ADSCrossRefGoogle Scholar
  12. Burgess, D. and J. G. Luhmann: 1986, ‘Scatter-free propagation of low energy protons in the magnetosheath: Implications for the production of field-aligned beams by non-thermal leakage’. J. Geophys. Res. 91, 1439–1449.ADSCrossRefGoogle Scholar
  13. Burgess, D. and S. J. Schwartz: 1984, ‘The dynamics and upstream distributions of ions reflected at the Earth’s bow shock’. J. Geophys. Res. 89(18), 7407–7422.ADSCrossRefGoogle Scholar
  14. Dunlop, M. W., A. Balogh, and K.-H. Glassmeier: 2002, ‘Four-point Cluster application of magnetic field analysis tools: The discontinuity analyzer’. J. Geophys. Res. 107, 1385, doi:10.1029/2001JA005089.CrossRefGoogle Scholar
  15. Dunlop, M. W. and T. I. Woodward: 1998, ‘Discontinuity analysis: Orientation and motion’. In: Analysis Methods for Multispacecraft Data, Vol. ISSI Sci. Rep. SR-001. Norwell, Mass.: Kluwer Acad., p. 271.Google Scholar
  16. Eastwood, J., E. A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, and R. Treumann: 2005, ‘The Foreshock’. Space Sci. Rev. this issue.Google Scholar
  17. Edmiston, J., C. Kennel, and D. Eichler: 1982, ‘Escape of heated ions upstream of quasi-parallel shocks’. Geophys. Res. Lett. 9, 531–534.ADSCrossRefGoogle Scholar
  18. Eselevich, V. G.: 1982, ‘Shock-wave structure in collisionless plasmas from results of laboratory experiments’. Space Science Reviews 32, 65–81.CrossRefADSGoogle Scholar
  19. Eselevich, V. G., A. G. Eskov, R. C. Kurtmullaev, and A. I. Malyutin: 1971, ‘Isomagnetic discontinuity in a collisionless shock wave’. Soviet Phys. JETP 33, 1120.ADSGoogle Scholar
  20. Farris, M. H. and C. T. Russell: 1994, ‘Determining the standoff distance of the bow shock: Mach number dependence and use of models’. J. Geophys. Res. 99(18), 17681.CrossRefADSGoogle Scholar
  21. Formisano, V.: 1979, ‘The three-dimensional shape of the bow shock’. Nuovo Cimento C Geophysics Space Physics C 2, 681–692.ADSCrossRefGoogle Scholar
  22. Formisano, V.: 1982, ‘Measurement of the potential drop across the Earth’s collisionless bow shock’. Geophys. Res. Lett. 9, 1033.ADSCrossRefGoogle Scholar
  23. Formisano, V.: 1985, ‘Collisionless shock waves in space and astrophysical plasmas’. In: Proc. ESA workshop on future missions in solar, heliospheric and space plasma physics, Vol. ESA SP-235. p. 83.ADSGoogle Scholar
  24. Formisano, V. and R. Torbert: 1982, ‘Ion acoustic wave forms generated by ion-ion streams at the Earth’s bow shock’. Geophys. Res. Lett. 9, 207.ADSCrossRefGoogle Scholar
  25. Fuselier, S. and M. F. Thomsen: 1992, ‘He2+ in field-aligned beams: ISEE results’. Geophys. Res. Lett. 19, 437.ADSCrossRefGoogle Scholar
  26. Fuselier, S. A. and W. K. H. Schmidt: 1994, ‘H+ and He2+ heating at the Earth’s bow shock’. J. Geophys. Res. 99(18), 11539–11546.CrossRefADSGoogle Scholar
  27. Galeev, A. A., C. F. Kennel, V. V. Krasnoselskikh, and V. V. Lobzin: 1988a, ‘Quasiperpendicular collisionless high Mach number shocks’. In: Proc. Joint Varenna-Abastumani Int. School & Workshop on Plasma Astrophysics, Varenna, Italy, 24 Aug–3 September. pp. 173–183.Google Scholar
  28. Galeev, A. A., C. F. Kennel, V. V. Krasnoselskikh, and V. V. Lobzin: 1988b, ‘The role of whistler oscillations in the formation of the structure of high Mach number collisionless shock’. In: Proc. Joint Varenna-Abastumani Int. School & Workshop on Plasma Astrophysics, Varenna, Italy, 24 Aug–3 September. pp. 165–171.Google Scholar
  29. Galeev, A. A., V. V. Krasnoselskikh, and V. V. Lobzin: 1988c, ‘On the fine structure of the quasiper-pendicular supercritical collisonless shock,’. Sov. J. Plasma Phys. 14, 697.Google Scholar
  30. Gedalin, M. and E. Griv: 1999, ‘Role of overshoots in the formation of the downstream distribution of adiabatic electrons’. J. Geophys. Res. 104(13), 14821–14826.CrossRefADSGoogle Scholar
  31. Giacalone, J., T. P. Armstrong, and R. B. Decker: 1991, ‘Effect of magnetic overshoot on shock drift acceleration’. J. Geophys. Res. 96(15), 3621–3626.ADSCrossRefGoogle Scholar
  32. Gosling, J. T., J. R. Asbridge, S. J. Bame, G. Paschmann, and N. Sckopke: 1978, ‘Observations of two distinct populations of bow shock ions in the upstream solar wind’. Geophys. Res. Lett. 5, 957–960.ADSCrossRefGoogle Scholar
  33. Gosling, J. T. and A. E. Robson: 1985, ‘Ion reflection, gyration, and dissipation at supercritical shocks’. In: B. Tsurutani and R. Stone (eds.): Collisionless Shocks in the Heliosphere: Reviews of current research, Geophys. Monogr. Ser. vol 35. Washington, D.C.: American Geophysical Union, pp. 141–152.Google Scholar
  34. Greenstadt, E. W., C. T. Russell, and M. Hoppe: 1980, ‘Magnetic field orientation and suprathermal ion streams in the Earth’s foreshock’. J. Geophys. Res. 85(.14), 3473–3479.ADSCrossRefGoogle Scholar
  35. Gustafsson, G., R. Bostrøm, B. Holback, G. Holmgren, A. Lundgren, K. Stasiewicz, L. Åéhlen, F. S. Mozer, D. Pankow, P. Harvey, P. Berg, R. Ulrich, A. Pedersen, R. Schmidt, A. Butler, A. W. C. Fransen, D. Klinge, M. Thomsen, C.-G. Falthammar, P.-A. Lindqvist, S. Christenson, J. Holtet, B. Lybekk, T. A. Sten, P. Tanskanen, K. Lappalainen, and J. Wygant: 1997, ‘The electric field and wave experiment for the Cluster mission’. Space Sci. Rev. 79, 137–156.CrossRefADSGoogle Scholar
  36. Hada, T., M. Oonishi, B. Lembège, and P. Savoini: 2003, ‘Shock front nonstationarity of supercritical perpendicular shocks’. J. Geophys. Res. 108, 1233, doi:10.1029/2002JA009339.CrossRefGoogle Scholar
  37. Hellinger, P., P. Trávnícek, and H. Matsumoto: 2002, ‘Reformation of perpendicular shocks: Hybrid simulations’. Geophys. Res. Lett. 29, 2234, doi:10.1029/2002GL015915.CrossRefADSGoogle Scholar
  38. Heppner, J. P., N. C. Maynard, and T. L. Aggson: 1978, ‘Early results from ISEE-1 electric field measurements’. Space Sci. Rev. 22, 777.CrossRefADSGoogle Scholar
  39. Heppner, J. P., M. Sugiura, T. L. Skillman, B. G. Ledley, and M. Campbell: 1967, ‘OGO-A magnetic field observations’. J. Geophys. Res. 72(11), 5417.ADSCrossRefGoogle Scholar
  40. Horbury, T. S., P. Cargill, E. A. Lucek, A. Balogh, M. W. Dunlop, T. Oddy, C. Carr, A. Szabo, and K.-H. Fornacon: 2001, ‘Cluster magnetic field observations of the bowshock: Orientation, motion and structure’. Ann. Geophys. 19, 1399–1409.ADSCrossRefGoogle Scholar
  41. Horbury, T. S., P. J. Cargill, E. A. Lucek, J. Eastwood, A. Balogh, M. W. Dunlop, K.-H. Fornaçon, and E. Georgescu: 2002, ‘Four spacecraft measurements of the quasi-perpendicular terrestrial bowshock: Orientation and motion’. J. Geophys. Res. 107(A8), 1208, doi 10.1029/2001JA000273.CrossRefGoogle Scholar
  42. Ipavich, F. M., G. Gloeckler, D. Hamliton, and L. Kistler: 1988, ‘Protons and alpha particles in field-aligned beams upstream of the bow shock’. Geophys. Res. Lett. 15, 1153.ADSCrossRefGoogle Scholar
  43. Karpman, V. I.: 1964, ‘Structure of the shock front propagating at an angle of the magnetic field in a low density plasma’. Sov. Phys. Tech. Phys. Engl. Trans. 8, 715.Google Scholar
  44. Kennel, C. F., J. P. Edmiston, and T. Hada: 1985, ‘A quarter century of collisionless shock research’. Washington DC American Geophysical Union Geophysical Monograph Series 34, 1–36.ADSGoogle Scholar
  45. Krasnosel’skikh, V. V.: 1985, ‘Nonlinear plasma motions across the magnetic field’. Sov. Phys. JETP 62, 282.Google Scholar
  46. Krasnosel’skikh, V. V., T. Vinogradova, M. A. Balikhin, H. S. C. Alleyne, A. K. Pardaens, L. J. C. Woolliscroft, S. I. Klimov, A. Petrukovich, W. A. C. Mier-Jedrzejowicz, and D. J. Southwood: 1991, ‘On the nature of low frequency turbulence in the foot of strong quasi-perpendicular shocks’. Advances in Space Research 11, 15–18.CrossRefADSGoogle Scholar
  47. Krasnosselskikh, V., B. Lemb’ege, P. Savoini, and V. V. Lobzin: 2002, ‘Nonstationarity of strong collisionless quasiperpendicular shocks: Theory versus full particle numerical simulations’. Phys. Plasmas 9(4), 1192.MathSciNetCrossRefADSGoogle Scholar
  48. Kucharek, H., E. Möbius, M. Scholer, C. Mouikis, L. Kistler, T. Horbury, A. Balogh, H. Réme, and J. Bosqued: 2004, ‘On the origin of field-aligned beams at the quasi-perpendicular bow shock: Multi-spacecraft observations by Cluster’. Ann. Geophys. 22, 2301–2308.ADSCrossRefGoogle Scholar
  49. Lembège, B. and J. M. Dawson: 1987a, ‘Plasma heating through a supercritical oblique collisionless shock’. Physics of Fluids 30, 1110–1114.CrossRefADSGoogle Scholar
  50. Lembège, B. and J. M. Dawson: 1987b, ‘Self-consistent study of a perpendicular collisionless and nonresistive shock’. Physics of Fluids 30, 1767–1788.CrossRefADSGoogle Scholar
  51. Lembège, B. and P. Savoini: 1992, ‘Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation’. Physics of Fluids B 4, 3533–3548.CrossRefADSGoogle Scholar
  52. Lembège, B., S. N. Walker, P. Savoini, M. A. Balikhin, and V. Krasnosel’skikh: 1999, ‘The spatial sizes of electric and magnetic field gradients in a simulated shock’. Adv. Space. Res. 24, 109–112.CrossRefADSGoogle Scholar
  53. Lepidi, S., U. Villante, and A. J. Lazarus: 1997, ‘Single spacecraft identification of the bow shock orientation and speed: A comparison between different methods’. Nuovo Cimento C Geophysics Space Physics C 20, 911.ADSGoogle Scholar
  54. Leroy, M. M., C. C. Goodrich, D. Winske, C. S. Wu, and K. Papadopoulos: 1981, ‘Simulation of a perpendicular bow shock’. Geophys. Res. Lett. 8, 1269–1272.ADSCrossRefGoogle Scholar
  55. Leroy, M. M. and D. Winske: 1983, ‘Backstreaming ions from oblique Earth bow shocks’. Annales Geophysicae 1, 527–536.ADSGoogle Scholar
  56. Leroy, M. M., D. Winske, C. C. Goodrich, C. S. Wu, and K. Papadopoulos: 1982, ‘The structure of perpendicular bow shocks’. J. Geophys. Res. 87, 5081.ADSCrossRefGoogle Scholar
  57. Liewer, P. C., V. K. Decyk, J. M. Dawson, and B. Lembège: 1991, ‘Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves’. J. Geophys. Res. 96, 9455.ADSCrossRefGoogle Scholar
  58. Lin, R. P., C. I. Meng, and K. A. Anderson: 1974, ‘30–100 keV protons upstream from the Earth bow shock’. J. Geophys. Res. 79, 489.ADSCrossRefGoogle Scholar
  59. Livesey, W. A., C. F. Kennel, and C. T. Russell: 1982, ‘ISEE-1 and-2 observations of magnetic field strength overshoots in quasi-perpendicular bow shocks’. Geophys. Res. Lett. 9, 1037–1040.ADSCrossRefGoogle Scholar
  60. Livesey, W. A., C. T. Russell, and C. F. Kennel: 1984, ‘A comparison of specularly reflected gyrating ion orbits with observed shock foot thicknesses’. J. Geophys. Res. 89(18), 6824–6828.ADSCrossRefGoogle Scholar
  61. Maksimovic, M., S. D. Bale, T. S. Horbury, and M. André: 2003, ‘Bow shock motions observed with CLUSTER’. Geophys. Res. Lett. 30, 1393, doi:10.1029/2002GL016761.CrossRefADSGoogle Scholar
  62. Meziane, K., C. Mazelle, M. Wilber, D. Lequéau, J. Eastwood, H. Rème, I. Dandouras, J. Sauvaud, J. Bosqued, G. Parks, L. Kistler, M. McCarthy, B. Klecker, A. Korth, M. Bavassano-Cattaneo, R. Lundin, and A. Balogh: 2004, ‘Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: A case study’. Annales Geophysicae 22, 2325–2335.ADSCrossRefGoogle Scholar
  63. Möbius, E., H. Kucharek, C. Mouikis, E. Geogescu, L. M. Kistler, M. A. Popecki, M. Scholer, J. M. Bosqued, H. Réme, C. W. Carlson, B. Klecker, A. Korth, G. K. Parks, J. C. Sauvand, H. Balsiger, M.-B. Bavassano-Cattaneu, I. Dandouras, A. M. DiLellis, L. Eliasson, V. Formisano, T. Hobury, W. Lennartson, R. Lundin, M. McCarthy, J. McFadden, and G. Paschmann: 2001, ‘Observation of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS’. Ann. Geophys. 19, 1411.ADSCrossRefGoogle Scholar
  64. Morse, D. L.: 1976, ‘A model for ion thermalization in the Earth’s bow shock’. J. Geophys. Res. 81(10), 6126–6130.ADSCrossRefGoogle Scholar
  65. Morse, D. L., W. W. Destler, and P. L. Auer: 1972, ‘Nonstationary behavior of collisionless shocks’. Physical Review Letters 28, 13–16.CrossRefADSGoogle Scholar
  66. Newbury, J. A. and C. T. Russell: 1996, ‘Observations of a very thin collisionless shock’. Geophys. Res. Lett. 23, 781.CrossRefADSGoogle Scholar
  67. Papadopoulos, K.: 1985, ‘Microinstabilities and anomalous transport’. Washington DC American Geophysical Union Geophysical Monograph Series 34, 59–90.ADSGoogle Scholar
  68. Paschmann, G., N. Sckopke, I. Papamastorakis, J. R. Asbridge, S. J. Bame, and J. T. Gosling: 1981, ‘Characteristics of reflected and diffuse ions upstream from the earth’s bow shock’. J. Geophys. Res. 86(15), 4355–4364.ADSCrossRefGoogle Scholar
  69. Paschmann, G. and P. W. Daly (eds.): 1998, Analysis methods for multi-spacecraft data, ISSI Sci. Rep. SR-001. Bern: ISSI.Google Scholar
  70. Paschmann, G., N. Sckopke, S. J. Bame, and J. Gosling: 1982, ‘Observations of gyrating ions in the foot of the nearly perpendicular bow shock’. Geophys. Res. Lett. 9, 881.ADSCrossRefGoogle Scholar
  71. Paschmann, G., N. Sckopke, I. Papamastorakis, J. Asbridge, S. Bame, and J. Gosling: 1980, ‘Energetization of solar wind ions by reflection from the Earth’s bow shock’. J. Geophys. Res. 85, 4689.ADSCrossRefGoogle Scholar
  72. Peredo, M., J. A. Slavin, E. Mazur, and S. A. Curtis: 1995, ‘Three-dimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation’. J. Geophys. Res. 100(9), 7907–7916.CrossRefADSGoogle Scholar
  73. Quest, K. B.: 1985, ‘Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas’. Physical Review Letters 54, 1872–1874.CrossRefADSGoogle Scholar
  74. Quest, K. B.: 1986, ‘Simulations of high Mach number perpendicular shocks with resistive electrons’. J. Geophys. Res. 91(10), 8805–8815.ADSCrossRefGoogle Scholar
  75. Russell, C. T. and E. W. Greenstadt: 1979, ‘Initial ISEE magnetometer results-Shock observation’. Space Science Reviews 23, 3–37.CrossRefADSGoogle Scholar
  76. Saxena, R., S. D. Bale, and T. S. Horbury: 2004, ‘Wavelength and decay length of density overshoot structure at supercritical, collisionless bow shocks’. Phys. of Plasmas p. submitted.Google Scholar
  77. Scholer, M., H. Kucharek, and J. Giacalone: 2000, ‘Cross-field diffusion of charged particles and the problem of ion injection and acceleration at quasi-perpendicular shocks’. J. Geophys. Res. 105, 18285.CrossRefADSGoogle Scholar
  78. Scholer, M., I. Shinohara, and S. Matsukiyo: 2003, ‘Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing’. J. Geophys. Res. 108, 1014, doi:10.1029/2002JA009515.CrossRefGoogle Scholar
  79. Schwartz, S. J.: 1998, ‘Shock and discontinuity normals, Mach numbers, and related parameters’. In: G. Paschmann and P. W. Daly (eds.): Analysis methods for multi-spacecraft data, ISSI Sci. Rep. SR-001. Bern: ISSI, pp. 249–270.Google Scholar
  80. Schwartz, S. J. and D. Burgess: 1984, ‘On the theoretical/observational comparison of field-aligned ion beams in the Earth’s foreshock’. J. Geophys. Res. 89, 2381–2384.ADSCrossRefGoogle Scholar
  81. Schwartz, S. J., M. F. Thomsen, and J. Gosling: 1983, ‘Ions upstream of the earth’s bow shock: A theoretical comparison of alternative source populations’. J. Geophys. Res. 88, 2039–2047.ADSCrossRefGoogle Scholar
  82. Sckopke, N., G. Paschmann, S. J. Bame, J. T. Gosling, and C. T. Russell: 1983, ‘Evolution of ion distributions across the nearly perpendicular bow shock-Specularly and non-specularly reflected-gyrating ions’. J. Geophys. Res. 88(17), 6121–6136.ADSCrossRefGoogle Scholar
  83. Sckopke, N., G. Paschmann, A. L. Brinca, C. W. Carlson, and H. Lühr: 1990, ‘Ion thermalization in quasi-perpendicular shocks involving reflected ions’. J. Geophys. Res. 95, 6337.ADSCrossRefGoogle Scholar
  84. Scudder, J. D.: 1995, ‘A Review of the Physics of Electron Heating at Collisionless shocks’. Adv. Space. Res. 15, 181.CrossRefADSGoogle Scholar
  85. Scudder, J. D., T. L. Aggson, A. Mangeney, C. Lacombe, and C. C. Harvey: 1986, ‘The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II-Dissipative fluid electrodynamics’. J. Geophys. Res. 91(10), 11053–11073.ADSCrossRefGoogle Scholar
  86. Sibeck, D. G., R. E. Lopez, and E. C. Roelof: 1991, ‘Solar wind control of the magnetopause shape, location, and motion’. J. Geophys. Res. 96(15), 5489–5495.ADSCrossRefGoogle Scholar
  87. Sonnerup, B. U. O.: 1969, ‘Acceleration of particles reflected at a shock front’. J. Geophys. Res. 74, 1301.ADSCrossRefGoogle Scholar
  88. Spreiter, J. R., A. L. Summers, and A. Y. Alksne: 1966, ‘Hydromagnetic flow around the magnetosphere’. Planet. Space Sci. 14, 223–223.CrossRefADSGoogle Scholar
  89. Tanaka, M., C. C. Goodrich, D. Winske, and K. Papadopoulos: 1983, ‘A Source of the backstreaming ion beams in the foreshock region’. J. Geophys. Res. 88, 3046.ADSCrossRefGoogle Scholar
  90. Terasawa, T.: 1979, ‘Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves of the fast mode’. Planet. Space Sci. 27, 193.CrossRefADSGoogle Scholar
  91. Thomsen, M.: 1985, ‘Upstream suprathermal ions’. In: B. Tsurutani and R. Stone (eds.): Collisionless Shocks in the Heliosphere: Reviews of current research, Geophys. Monogr. Ser. vol 35. Washington, D.C.: American Geophysical Union, pp. 253–270.Google Scholar
  92. Thomsen, M. F., J. T. Gosling, S. J. Bame, W. C. Feldman, G. Paschmann, and N. Sckopke: 1983a, ‘Field-aligned beams upstream of the Earth’s bow shock: Evidence for a magnetosheath source’. Geophys. Res. Lett. 10, 1207–1210.ADSCrossRefGoogle Scholar
  93. Thomsen, M. F., S. J. Schwartz, and J. T. Gosling: 1983b, ‘Observational evidence on the origin of ions upstream of the earth’s bow shock’. J. Geophys. Res. 88, 7843–7852.ADSCrossRefGoogle Scholar
  94. Tsurutani, B. T. and R. G. Stone: 1985, ‘Collisionless shocks in the heliosphere: Reviews of current research’. Washington DC American Geophysical Union Geophysical Monograph Series 35.Google Scholar
  95. Vaisberg, O., S. Klimov, G. Zastenker, M. Nozdrachev, A. Sokolov, V. Smirnov, S. Savin, and L. Avanov: 1984, ‘Relaxation of plasma at the shock front’. Adv. Space. Res. 4, 265–275.CrossRefADSGoogle Scholar
  96. Vaisberg, O., G. Zastenker, V. Smirnov, Z. Nemecek, and J. Safrankova: 1986a, ‘Ion distribution function dynamics near the strong shock front (Project Intershock)’. Advances in Space Research 6, 41–44.CrossRefADSGoogle Scholar
  97. Vaisberg, O. L., G. N. Zastenker, V. N. Smirnov, Z. Nemechek, and I. Shafrankova: 1986b, ‘Dynamics of the ion distribution function near the Earth’s bow shock (May 11, 1985)’. Cosmological Research 24, 166–176.ADSGoogle Scholar
  98. Walker, S., H. Alleyne, M. Balikhin, M. Andre, and T. Horbury: 2004, ‘Electric field scales at quasiperpendicular shocks’. Annales Geophys. 22, 2291–2300.ADSCrossRefGoogle Scholar
  99. Walker, S. N., M. A. Balikhin, H. S. K. Alleyne, W. Baumjohann, and M. Dunlop: 1999, ‘Observations of a very thin shock’. Adv. Space. Res. 24, 47–50.CrossRefADSGoogle Scholar
  100. Wygant, J. R., M. Bensadoun, and F. S. Mozer: 1987, ‘Electric field measurements at subcritical, oblique bow shock crossings’. J. Geophys. Res. 92, 11109.ADSCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S. D. Bale
    • 1
  • M. A. Balikhin
    • 2
  • T. S. Horbury
    • 3
  • V. V. Krasnoselskikh
    • 4
  • H. Kucharek
    • 5
  • E. Möbius
    • 5
    • 6
  • S. N. Walker
    • 2
  • A. Balogh
    • 3
  • D. Burgess
    • 7
  • B. Lembège
    • 8
  • E. A. Lucek
    • 3
  • M. Scholer
    • 9
  • S. J. Schwartz
    • 7
    • 10
  • M. F. Thomsen
    • 11
  1. 1.Department of Physics and Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Automatic Control and Systems EngineeringUniversity of SheffieldSheffieldUK
  3. 3.Space and Atmospheric Physics, The Blackett LaboratoryImperial College LondonLondonUK
  4. 4.LPCE/CNRSOrléansFrance
  5. 5.Space Science Center, Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA
  6. 6.Also Department of PhysicsUniversity of New HampshireDurhamUSA
  7. 7.Astronomy Unit, Queen MaryUniversity of LondonLondonUK
  8. 8.CETP/IPSLVelizyFrance
  9. 9.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany
  10. 10.Now at Space and Atmospheric Physics, The Blackett LaboratoryImperial College LondonLondonUK
  11. 11.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations