Advertisement

The Foreshock

  • J. P. Eastwood
  • E. A. Lucek
  • C. Mazelle
  • K. Meziane
  • Y. Narita
  • J. Pickett
  • R. A. Treumann
Part of the Space Sciences Series of ISSI book series (SSSI, volume 20)

Keywords

Solar Wind Langmuir Wave Cluster Spacecraft Upstream Wave Minimum Variance Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, C., R. L. M. Pherron, and J. D. Means: 1976, ‘A comparative study of three techniques for using the spectral matrix in wave analysis’. Radio Sci. 11, 833.ADSGoogle Scholar
  2. Asbridge, J. R., S. J. Bame, and I. B. Strong: 1968, ‘Outward flow of protons from the Earth’s bow shock’. J. Geophys. Res. 73, 5777–5782.ADSGoogle Scholar
  3. Bale, S. D., D. Burgess, P. J. Kellogg, K. Goetz, and S. J. Monson: 1997, ‘On the amplitude of intense Langmuir waves in the terrestrial electron foreshock’. J. Geophys. Res. 102,11, 281.Google Scholar
  4. Balikhin, M., T. D. de Wit, H. S. C. K. Alleyne, L. J. C. Woolliscroft, S. N. Walker, V. Krasnosel’skikh, W. A. C. Mier-Jedrzejeowicz, and W. Baumjohann: 1997a, ‘Experimental determination of the dispersion of waves observed upstream of a quasi-perpendicular shock’. Geophys. Res. Lett. 24, 787–790.ADSCrossRefGoogle Scholar
  5. Balikhin, M. A., L. J. C. Woolliscroft, H. S. C. Alleyne, M. Dunlop, and M. A. Gedalin: 1997b, ‘Determination of the dispersion of low frequency waves downstream of a quasiperpendicular collisionless shock’. Ann. Geophys. 15, 143–151.ADSGoogle Scholar
  6. Balogh, A., S. J. Schwartz, S. D. Bale, M. A. Balikhin, D. Burgess, T. S. Horbury, V. V. Krasnoselskikh, H. Kucharek, B. Lembège, E. A. Lucek, E. Möbius, M. Scholer, M. F. Thomsen, and S. N. Walker: 2005, ‘Cluster at the Earth’s Bow Shock: Introduction’. Space Sci. Rev. this issue.Google Scholar
  7. Balogh, A. et al.: 1997, ‘The Cluster magnetic field investigation’. SpaceSci. Rev. 79, 65–91.ADSCrossRefGoogle Scholar
  8. Bame, S. J., J. R. Asbridge, W. C. Feldman, J. T. Gosling, G. Paschmann, and N. Sckopke: 1980, ‘Deceleration of the solar wind upstream from the Earth’s bow shock and the origin of diffuse upstream ions’. J. Geophys. Res. 85(6), 2981–2990.ADSGoogle Scholar
  9. Barnes, A.: 1970, ‘Theory of generation of bow-shock-associated hydromagnetic waves in the upstream interplanetary medium’. Cosmic Electrodyn. 1, 90–114.ADSGoogle Scholar
  10. Bendat, J. and A. G. Piersol: 1980, Engineering applications of correlation and spectral analysis, pp. 54–56. New York: John Wiley & Sons, Inc.zbMATHGoogle Scholar
  11. Bendat, J. S. and A. G. Piersol: 1986, Random Data Analysis and Measurement Procedures. John Wiley and Sons, 2 edition.Google Scholar
  12. Blanco-Cano, X., G. Le, and C. T. Russell: 1999, ‘Identification of foreshock waves with 3-s period’. J. Geophys. Res. 104(3), 4643–4656.ADSCrossRefGoogle Scholar
  13. Blanco-Cano, X. and S. J. Schwartz: 1997, ‘Identification of low-frequency kinetic wave modes in the Earth’s ion foreshock’. Ann. Geophys. 15, 273–288.ADSGoogle Scholar
  14. Bonifazi, C. and G. Moreno: 1981, ‘Reflected and diffuse ions backstreaming from the Earth’s shock 2. Origin’. J. Geophys. Res. 86(15), 4405–4414.ADSGoogle Scholar
  15. Born, M. and E. Wolf: 1980, Principles of optics-6th ed., pp. 503–504, 550. New York: Pergamon press.Google Scholar
  16. Brinca, A. L.: 1991, ‘Cometary Linear Instabilities: From Profusion to Perspective’. In: A. D. Johnstone (ed.): Geophysical Monograph 61: Cometary Plasma Processes. American Geophysical Union, pp. 211–221.Google Scholar
  17. Burgess, D.: 1989a, ‘Cyclic behavior at quasi-parallel collisionless shocks’. Geophys. Res. Lett. 16, 345–348.ADSGoogle Scholar
  18. Burgess, D.: 1989b, ‘On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock’. J. Geophys. Res. 94, 472–478.ADSGoogle Scholar
  19. Burgess, D.: 1995, ‘Foreshock-shock interaction at collisionless quasi-parallel shocks’. Adv. Space Res. 15(8/9), 159–169.ADSCrossRefGoogle Scholar
  20. Burgess, D.: 1997, ‘What do we really know about upstream waves?’. 20, 673–682.Google Scholar
  21. Burgess, D., E. A. Lucek, M. Scholer, S. D. Bale, M. A. Balikhin, A. Balogh, T. S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S. J. Schwartz, M. F. Thomsen, and S. N. Walker: 2005, ‘Quasi-parallel Shock Structure and Processes’. Space Sci. Rev. this issue.Google Scholar
  22. Cairns, I. H. and P. A. Robinson: 1997, ‘First test of stochastic growth theory for Langmuir waves in Earth’s foreshock’. J. Geophys. Res. 24, 369.Google Scholar
  23. Cairns, I. H. and P. A. Robinson: 1999, ‘Strong evidence for stochastic growth of Langmuir-like waves in Earth’s foreshock’. Phys. Rev. Lett. 82, 3066.ADSCrossRefGoogle Scholar
  24. Cairns, I. H., P. A. Robinson, R. R. Anderson, and R. J. Strangeway: 1997, ‘Foreshock Langmuir waves for unusually constant solar wind conditions: data and implications for foreshock structure’. J. Geophys. Res. 102,24, 249.Google Scholar
  25. Drury, L. O.: 1983, ‘An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas’. Rep. Prog. Phys. 46, 973–1027.ADSCrossRefGoogle Scholar
  26. Dudok de Wit, T., V. V. Krasnosel’skikh, S. D. Bale, M. W. Dunlop, H. Lühr, S. J. Schwartz, and L. J. C. Woolliscroft: 1995, ‘Determination of dispersion relations in quasi-stationary plasma turbulence using dual satellite data’. Geophys. Res. Lett. 22, 2653–2656.ADSCrossRefGoogle Scholar
  27. Eastwood, J. P., A. Balogh, M. W. Dunlop, T. S. Horbury, and I. Dandouras: 2002, ‘Cluster observations of fast magnetosonic waves in the terrestrial foreshock’. Geophys. Res. Lett. 29, 2046, doi: 10.1029/2002GL015582.ADSCrossRefGoogle Scholar
  28. Eastwood, J. P., A. Balogh, and E. A. Lucek: 2003, ‘On the existence of Alfvén waves in the terrestrial foreshock’. Ann. Geophys. 21, 1457–1465.ADSGoogle Scholar
  29. Eastwood, J. P., A. Balogh, C. Mazelle, I. Dandouras, and H. Reme: 2004, ‘Oblique propagation of 30s period fast magnetosonic foreshock waves: A Cluster case study’. Geophys. Res. Lett. 31, L04804, doi:10.1029/2003GL018897.CrossRefGoogle Scholar
  30. Etcheto, J. and M. Faucheaux: 1984, ‘Detailed study of electron plasma waves upstream of the Earth’s bow shock’. J. Geophys. Res. 89, 6631.ADSGoogle Scholar
  31. Fairfield, D.: 1969, ‘Bow shock associated waves observed in the far upstream interplanetary medium’. J. Geophys. Res. 74, 3541–3553.ADSGoogle Scholar
  32. Fairfield, D. H.: 1974, ‘Whistler waves observed upstream from collisionless shocks’. J. Geophys. Res. 79(10), 1368–1378.ADSGoogle Scholar
  33. Farris, M. H., S. M. Petrinec, and C. T. Russell: 1991, ‘The thickness of the magnetosheath: Constraints on the polytropic index’. Geophys. Res. Lett. 18(10), 1821–1824.ADSGoogle Scholar
  34. Fazakerley, A. N., A. J. Coates, and M.W. Dunlop: 1995, ‘Observations of upstream ions, solar wind ions and electromagnetic waves in the Earth’s foreshock’. Adv. Space Res. 15(8/9), 103–106.ADSCrossRefGoogle Scholar
  35. Feldman, W. C., J. R. Asbridge, S. J. Bame, and M. D. Montgomery: 1973, ‘Solar wind heat transport in the vicinity of the Earth’s bow shock’. J.Geophys.Res. 78, 3697–3713.ADSGoogle Scholar
  36. Filbert, P. and P. J. Kellogg: 1979, ‘Electrostatic noise at the plasma frequency beyond the Earth’s bow shock’. J. Geophys. Res. 84, 1369.ADSGoogle Scholar
  37. Fitzenreiter, R. J.: 1995, ‘The electron foreshock’. Adv. Space Res. 15(8/9), (8/9)9–(8/9)27.ADSGoogle Scholar
  38. Fitzenreiter, R. J., A. J. Klimas, and J. D. Scudder: 1984, ‘Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary’. Geophys. Res. Lett. 11, 496–499.ADSGoogle Scholar
  39. Fowler, R. A., B. J. Kotick, and R. D. Elliott: 1967, ‘Polarization analysis of natural and artificially induced geomagnetic micropulsations’. J. Geophys. Res. 72, 2871–2883.ADSGoogle Scholar
  40. Fredricks, R. W., F. L. Scarf, and L. A. Frank: 1971, ‘Nonthermal electrons and high-frequency waves in the upstream solar wind’. J. Geophys. Res. 76, 6691–6699.ADSGoogle Scholar
  41. Fuselier, S. A.: 1994, ‘Suprathermal ions upstream and downstream from the Earth’s bow shock’. In: M. J. Engebretson, K. Takahashi, and M. Scholer (eds.): Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves Geophysical Monograph 81. American Geophysical Union, pp. 107–119.Google Scholar
  42. Fuselier, S. A.: 1995, ‘Ion distributions in the earth’s foreshock upstream from the bow shock’. Adv. Space Res. 15(8/9), (8/9)43–(8/9)52.ADSGoogle Scholar
  43. Fuselier, S. A., J. T. Gosling, and M. F. Thomsen: 1986, ‘The motion of ions specularly reflected off a quasi-parallel shock in the presence of large-amplitude, monochromatic MHD waves’. J. Geophys. Res. 91, 4163–4170.ADSGoogle Scholar
  44. Fuselier, S. A., D. A. Gurnett, and R. J. Fitzenreiter: 1985, ‘The downshift of electron plasma oscillations in the electron foreshock region’. J. Geophys. Res. 90, 3935.ADSGoogle Scholar
  45. Fuselier, S. A. and M. F. Thomsen: 1992, ‘He2+ in field aligned beams: ISEE results’. Geophys. Res. Lett. 19(5), 437–440.ADSGoogle Scholar
  46. Fuselier, S. A., M. F. Thomsen, S. P. Gary, S. J. Bame, C. T. Russell, and G. K. Parks: 1986a, ‘The phase relationship between gyrophase-bunched ions and MHD-like waves’. Geophys. Res. Lett. 13(1), 60–63.ADSGoogle Scholar
  47. Fuselier, S. A., M. F. Thomsen, J. T. Gosling, S. J. Bame, and C. T. Russell: 1986b, ‘Gyrating and intermediate ion distributions upstream from the Earth’s bow shock’. J. Geophys. Res. 91(1), 91–99.ADSGoogle Scholar
  48. Gary, S.: 1993, Theory of Space Plasma Microinstabilities. Cambridge: Cambridge Atmos. Space Science Series.Google Scholar
  49. Gary, S. P.: 1985, ‘Electromagnetic ion beam instabilities: hot beams at interplanetary shocks’. Astrophys. J. 288, 342–352.ADSCrossRefGoogle Scholar
  50. Gary, S. P., J. T. Gosling, and D. W. Forslund: 1981, ‘The electromagnetic ion beam instability upstream of the Earth’s bow shock’. J. Geophys. Res. 86(15), 6691–6696.ADSGoogle Scholar
  51. Glassmeier, K.-H., U. Motschmann, M. Dunlop, A. Balogh, M. H. Acuñna, C. Carr, G. Musmann, K.-H. Fornacon, K. Schweda, J. Vogt, E. Georgescu, and S. Buchert: 2001, ‘Cluster as a wave telescope-first results from the fluxgate magnetometer’. Ann. Geophys. 19, 1439–1447.ADSGoogle Scholar
  52. Gosling, J. T., J. R. Asbridge, S. J. Bame, G. Paschmann, and N. Sckopke: 1978, ‘Observations of two distinct populations of bow shock ions in the upstream solar wind’. Geophys. Res. Lett. 5, 957–960.ADSGoogle Scholar
  53. Gosling, J. T., M. F. Thomsen, S. J. Bame, W. C. Feldman, G. Paschmann, and N. Sckopke: 1982, ‘Evidence for specularly reflected ions upstream from the quasi-parallel bow shock’. Geophys. Res. Lett. 9, 1333–1336.ADSGoogle Scholar
  54. Gosling, J. T., M. F. Thomsen, S. J. Bame, and C. T. Russell: 1989, ‘On the source of the diffuse, suprathermal ions observed in the vicinity of the Earth’s bow shock’. J. Geophys. Res. 94(4), 3555–3563.ADSGoogle Scholar
  55. Greenstadt, E.W.: 1985, ‘Oblique, Parallel, and Quasi-Parallel Morphology of Collisionless Shocks’. In: B. T. Tsurutani and R. G. Stone (eds.): Collisionless Shocks in the Heliosphere: Reviews of Current Research Geophysical Monograph 35. American Geophysical Union, pp. 169–184.Google Scholar
  56. Greenstadt, E. W. and L. W. Baum: 1986, ‘Earth’s compressional foreshock boundary revisited Observations by the ISEE 1 magnetometer’. J. Geophys. Res. 91(10), 9001–9006.ADSGoogle Scholar
  57. Greenstadt, E. W., I. M. Green, G. T. Inouye, A. J. Hundhausen, S. J. B. and I. B., Strong: 1968, ‘Correlated magnetic field and plasma observations of the Earth’s bow shock’. J. Geophys. Res. 73, 51–60.ADSGoogle Scholar
  58. Greenstadt, E. W., G. Le, and R. J. Strangeway: 1995, ‘ULF waves in the foreshock’. Adv. Space. Res. 15, 71–84.ADSCrossRefGoogle Scholar
  59. Greenstadt, E. W. and M. M. Mellott: 1985, ‘Variable field-to-normal angles in the shock foreshock boundary observed by ISEE 1 and 2’. Geophys. Res. Lett. 12, 129–132.ADSGoogle Scholar
  60. Gurgiolo, C., G. K. Parks, and B. H. Mauk: 1983, ‘Upstream gyrophase bunched ions: a mechanism for creation at the bow shock and the growth of velocity space structure through gyrophase mixing’. J. Geophys. Res. 88(11), 9093–9100.ADSGoogle Scholar
  61. Gurnett, D. A., R. L. Huff, and D. L. Kirchner: 1997, ‘The Wide-Band Plasma Wave Investigation’. Space Sci. Rev. 79, 195–208.ADSCrossRefGoogle Scholar
  62. Hada, T., C. F. Kennel, and T. Terasawa: 1987, ‘Excitation of compressional waves and the formation of shocklets in the Earth’s foreshock’. J. Geophys. Res. 92(5), 4423–4435.ADSGoogle Scholar
  63. Hoppe, M. M. and C. T. Russell: 1983, ‘Plasma rest frame frequencies and polarizations of the low-frequency upstream waves: ISEE 1 and 2 observations’. J. Geophys. Res. 88, 2021–2028.ADSGoogle Scholar
  64. Hoppe, M. M., C. T. Russell, L. A. Frank, T. E. Eastman, and E. W. Greenstadt: 1981, ‘Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE 1 and 2 observations’. J. Geophys. Res. 86, 4471–4492.ADSGoogle Scholar
  65. Hoshino, M. and T. Terasawa: 1985, ‘Numerical study of the upstream wave excitation mechanism 1. Nonlinear phase bunching of beamions’. J. Geophys. Res. 90(1), 57–64.ADSGoogle Scholar
  66. Ipavich, F. M., J. T. Gosling, and M. Scholer: 1984, ‘Correlation between the He/Hratios in upstream particle events and in the solar wind’. J. Geophys. Res. 89(3), 1501–1507.ADSGoogle Scholar
  67. Jones, F. C. and D. C. Ellison: 1991, ‘The plasma physics of shock acceleration’. Space Sci. Rev. 58(3–4), 259–346.ADSCrossRefGoogle Scholar
  68. Kis, A., M. Scholer, B. Klecker, E. Möbius, E. Lucek, H. Réme, J. M. Bosqued, L. M. Kistler, and H. Kucharek: 2004, ‘Multispacecraft observations of diffuse ions upstream of Earth’s bow shock’. Geophys. Res. Lett. 31, L20801, doi:10.1029/2004GL020759.ADSCrossRefGoogle Scholar
  69. Krauss-Varban, D. and N. Omidi: 1993, ‘Propagation characteristics of waves upstream and downstream of quasi-parallel shocks’. Geophys. Res. Lett. 20, 1007–1010.ADSGoogle Scholar
  70. Krauss-Varban, D., N. Omidi, and K. B. Quest: 1994, ‘Mode properties of low frequency waves: Kinetic Theory versus Hall-MHD’. J. Geophys. Res. 99, 5987–6009.ADSCrossRefGoogle Scholar
  71. Le, G. and C. T. Russell: 1990, ‘A study of coherence length of ULF waves in the Earth’s foreshock’. J. Geophys. Res. 95,10,703–706.Google Scholar
  72. Le, G. and C. T. Russell: 1992a, ‘A study of ULF wave foreshock morphology-I: ULF foreshock boundary’. Planet. Space Sci. 40(9), 1203–1213.ADSCrossRefGoogle Scholar
  73. Le, G. and C. T. Russell: 1992b, ‘A study of ULF wave foreshock morphology-II: spatial variation of ULF waves’. Planet. Space Sci. 40(9), 1215–1225.ADSCrossRefGoogle Scholar
  74. Le, G. and C. T. Russell: 1994, ‘The Morphology of ULF Waves in the Earth’s Foreshock’. In: M. J. Engebretson, K. Takahashi, and M. Scholer (eds.): Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophysical Monograph 81. American Geophysical Union, pp. 87–98.Google Scholar
  75. Le, G., C. T. Russell, M. F. Thomsen, and J. T. Gosling: 1992, ‘Observations of a new class of upstream waves with periods near 3 seconds’. J. Geophys. Res. 97, 2917–2925.ADSGoogle Scholar
  76. Lin, R. P., C.-I. Meng, and K. A. Anderson: 1974, ‘30-to 100keV protons upstream from the Earth’s bow shock’. J.Geophys.Res. 79, 489–498.ADSGoogle Scholar
  77. Lucek, E. A., T. S. Horbury, A. Balogh, I. Dandouras, and H. Rçme: 2004, ‘Cluster observations of hot flow anomalies’. J. Geophys. Res. pp. A06207, doi:10.1029/2003JA010016.Google Scholar
  78. Mazelle, C., D. Le Quéau, and K. Meziane: 2000, ‘Nonlinear wave-particle interaction upstream from the Earth’s bow shock’. Nonlinear Proc. Geophys. 7, 185–190.ADSGoogle Scholar
  79. Mazelle, C., K. Meziane, D. Le Quéau, M. Wilber, J. P. Eastwood, H. Re, J. A. Sauvaud, J.M. Bosqued, I. Dandouras, M. McCarthy, L. M. Kistler, B. Kleckler, A. Korth, M. B. Bavassano-Cattaneo, R. Lundin, and A. Balogh: 2003, ‘Production of gyrating ions from nonlinear wave-particle interaction upstream from the Earth’s bow shock: a case study from Cluster-CIS’. Planet. Space Sci. 51, 785–795.ADSCrossRefGoogle Scholar
  80. Meziane, K. and C. d’Uston: 1998, ‘A statistical study of the upstream intermediate ion boundary in the Earth’s foreshock’. Ann. Geophys. 16, 125–133.ADSGoogle Scholar
  81. Meziane, K., C. Mazelle, C. D’Uston, H. Rçme, R. P. Lin, C.W. Carlson, D. Larson, J. P. McFadden, R. E. Ergun, K. A. Anderson, G. K. Parks, D. Berdichevsky, and R. P. Lepping: 1997, ‘Wind observation of gyrating-like ion distributions and low frequency waves upstream from the Earth’s bow shock’. Adv. Space. Res. 20, 703–706.ADSCrossRefGoogle Scholar
  82. Meziane, K., C. Mazelle, R. P. Lin, D. Le Quéau, D. E. Larson, G. K. Parks, and R. P. Lepping: 2001, ‘Three-dimensional observations of gyrating ion distributions far upstream from the Earth’s bow shock and their association with low-frequency waves’. J. Geophys. Res. 106(4), 5731–5742.ADSCrossRefGoogle Scholar
  83. Meziane, K., C. Mazelle, M. Wilber, D. Le Quéau, J. Eastwood, H. Rème, I. Dandouras, J. Sauvaud, J. Bosqued, G. Parks, L. Kistler, M. McCarthy, B. Klecker, A. Korth, M. Bavassano-Cattaneo, R. Lundin, and A. Balogh: 2004a, ‘Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study’. Ann. Geophys. 22, 2325–2335.ADSGoogle Scholar
  84. Meziane, K., M. Wilber, C. Mazelle, D. Le Quéau, H. Kucharek, E. A. Lucek, H. Rème, A. M. Hamza, J. A. Sauvaud, J. M. Bosqued, I. Dandouras, G. K. Parks, M. McCarthy, B. Klecker, A. Korth, M. B. Bavassano-Cattaneo, and R. N. Lundin: 2004b, ‘Simultaneous observations of field-aligned beams and gyrating ions in the terrestrial foreshock’. J. Geophys. Res. 109, A05107, doi:10.1029/2003JA010374.CrossRefGoogle Scholar
  85. Motschmann, U., T. I. Woodward, K.-H. Glassmeier, D. J. Southwood, and J. L. Pinçon: 1996, ‘Wavelength and direction filtering by magnetic measurements at satellite arrays: Generalized minimum variance analysis’. J. Geophys. Res. 101, 4961–4965.ADSCrossRefGoogle Scholar
  86. Narita, Y., K.-H. Glassmeier, S. S. S., U. Motschmann, K. Sauer, I. Dandouras, K.-H. Fornaçon, E. Georgescu, and H. Rème: 2003, ‘Dispersion analysis of ULF waves in the foreshock using Cluster data and the wave telescope technique’. Geophys. Res. Lett. 30, 1710, doi:10.1029/2003GL017432.CrossRefGoogle Scholar
  87. Narita, Y., K.-H. Glassmeier, S. Schäfer, U. Motschmann, M. Fränz, I. Dandouras, K.-H. Fornaçon, E. Georgescu, A. Korth, H. Rème, and I. Richter: 2004, ‘Alfvén waves in the foreshock propagating upstream in the plasma rest frame: Statistics from Cluster Observations’. Ann. Geophys. 22, 2315–2323.ADSCrossRefGoogle Scholar
  88. Ogilvie, K. W., T. von Rosenvinge, and A. C. Durney: 1977, ‘International Sun-Earth Explorer: A Three-Spacecraft Program’. Science 198(4313), 131–138.ADSGoogle Scholar
  89. Orlowski, D. S., C. T. Russell, D. Krauss-Varban, N. Omidi, and M. F. Thomsen: 1995, ‘Damping and spectral formation of upstream whistlers’. J. Geophys. Res. 100(9), 17117–17128.ADSCrossRefGoogle Scholar
  90. Paschmann, G., G. Haerendel, N. Sckopke, E. Möbius, H. Lühr, and C. W. Carlson: 1988, ‘Three-dimensional plasma structures with anomalous flow directions near the Earth’s bow shock’. J. Geophys. Res. 93, 11279–11294.ADSGoogle Scholar
  91. Paschmann, G., N. Sckopke, S. J. Bame, J. R. Asbridge, J. T. G. C. T. Russell, and E. W. Greenstadt: 1979, ‘Association of low-frequency waves with suprathermal ions in the upstream solar wind’. Geophys. Res. Lett. 6, 209–212.ADSGoogle Scholar
  92. Paschmann, G., N. Sckopke, I. Papamastorakis, J. R. Asbridge, S. J. Bame, and J. T. Gosling: 1981, ‘Characteristics of reflected and diffuse ions upstream from the Earth’s bow shock’. J. Geophys. Res. 86, 4355–4364.ADSGoogle Scholar
  93. Pinçon, J. and F. Lefeuvre: 1991, ‘Local characterization of homogeneous turbulence in a space plasma from simultaneous measurement of field components at several points in space’. J. Geophys. Res. 96, 1789–1802.ADSGoogle Scholar
  94. Pinçon, J. and U. Motschmann: 1998, ‘Multi-Spacecraft Filtering: General Framework’. In: G. Paschmann and P. Daly (eds.): Analysis methods for multi-spacecraft data, ISSI Sci. Rep. SR-001. Bern: ISSI, pp. 65–78.Google Scholar
  95. Reiner, M. J., M. L. Kaiser, J. Fainberg, M. D. Desch, and R. G. Stone: 1996, ‘2fp radio emission from the vicinity of the Earth’s foreshock: WIND observations’. Geophys. Res. Lett. 23(10), 1247–1250.ADSCrossRefGoogle Scholar
  96. Réme, H., J. M. Bosqued, J. A. Sauvaud, A. Cros, J. Dandouras, C. Aoustin, C. Martz, J. L. Médale, J. Rouzaud, E. Möbius, K. Crocker, M. Granoff, L. M. Kistler, D. Hovestadt, B. Klecker, G. Paschmann, M. Ertl, E. Künneth, C.W. Carlson, D.W. Curtis, R. P. Lin, J. P. McFadden, J. Croyle, V. Formisano, M. DiLellis, R. Bruno, M. B. Bavassano-Cattaneo, B. Baldetti, G. Chionchio, E. G. Shelley, A. G. Ghielmetti, W. Lennartson, A. Korth, H. Rosenbauer, I. Szemerey, R. Lundin, S. Olson, G. K. Parks, M. McCarth, and H. Balsiger: 1997, ‘The CLUSTER Ion Spectrometry Experiment’. Space Sci. Rev. 79, 303.ADSCrossRefGoogle Scholar
  97. Robinson, P. A., I. H. Cairns, and D. A. Gurnett: 1993, ‘Clumpy Langmuir waves in the type III radio sources: comparison of stochastic-growth theory with observations’. Astrophys. J. 407, 790–800.ADSCrossRefGoogle Scholar
  98. Russell, C. T.: 1994, ‘Planetary Upstream Waves’. In: M. J. Engebretson, K. Takahashi, and M. Scholer (eds.): Solar Wind Sources of Magnetospheric Ultra Low Frequency Waves, Geophysical Monograph 81. American Geophysical Union, pp. 75–86.Google Scholar
  99. Russell, C. T., D. D. Childers, and J. P. J. Coleman: 1971, ‘OGO 5 observations of upstream waves in interplanetary medium: Discrete wave packets’. J. Geophys. Res. 76, 845–861.ADSGoogle Scholar
  100. Russell, C. T. and M. M. Hoppe: 1983, ‘Upstream waves and particles /Tutorial Lecture/’. Space Sci. Rev. 34, 155–172.ADSCrossRefGoogle Scholar
  101. Sarris, E. T., G. C. Anagnostopoulos, and S. M. Krimigis: 1987, ‘Simultaneous measurements of energetic ion (50keV and above) and electron (220 keV and above) activity upstream of Earth’s bow shock and inside the plasma sheet — Magnetospheric source for the November 3 and December 3, 1977 upstream events’. J. Geophys. Res. 92(11), 12083–12096.ADSGoogle Scholar
  102. Sauer, K. and E. Dubinin: 2003, ‘Oscillitons and gyrating ions in a beam-plasma system’. Geophys. Res. Lett. 30, 2192, doi:10.1029/2003GL018266.CrossRefGoogle Scholar
  103. Sauer, K., E. Dubinin, and J. F. McKenzie: 2001, ‘New type of soliton in bi-ion plasmas and possible implications’. Geophys. Res. Lett. 28 3589–3592.ADSCrossRefGoogle Scholar
  104. Scarf, F. L., R. W. Fredricks, L. A. Frank, and M. Neugebauer: 1971, ‘Nonthermal electrons and high-frequency waves in the upstream solar wind 1. Observations’. J.Geophys.Res. 76, 5162–5171.ADSGoogle Scholar
  105. Scholer, M., M. Fujimoto, and H. Kucharek: 1993, ‘Two-dimensional simulations of supercritical quasi-parallel shocks: upstream waves, downstream waves, and shock re-formation’. J. Geophys. Res. 98, 18971–18984.ADSGoogle Scholar
  106. Schwartz, S.: 1998, ‘Shock and discontinuity normals, Mach numbers, and related parameters’. In: G. Paschmann and P. W. Daly (eds.): Analysis Methods for Multi-Spacecraft Data, ISSI SR-001. ESA Publications Division, pp. 249–270.Google Scholar
  107. Schwartz, S. J. and D. Burgess: 1991, ‘Quasi-Parallel Shocks: A Patchwork of Three-Dimensional Structures’. Geophys. Res. Lett. 18(3), 373–376.ADSGoogle Scholar
  108. Schwartz, S. J., C. P. Chaloner, P. J. Christiansen, D. S. Hall, A. D. Johnson, M. P. Gough, A. J. Norris, R. J. Rijnbeek, D. J. Southwood, and L. J. C. Woolliscroft: 1985, ‘An active current sheet in the solar wind’. Nature 318, 269–271.ADSCrossRefGoogle Scholar
  109. Schwartz, S. J., R. L. Kessel, C. C. Brown, L. J. C. Woolliscroft, M. W. Dunlop, C. J. Farrugia, and D. S. Hall: 1988, ‘Active current sheets near the Earth’s bow shock’. J. Geophys. Res. 93, 11295–11310.ADSGoogle Scholar
  110. Schwartz, S. J., N. Paschmann, N. Sckopke, T. M. Bauer, M. W. Dunlop, C. J. Farrugia, and D. S. Hall: 2000, ‘Conditions for the formation of hot flow anomalies at the Earths bow shock’. J. Geophys. Res. 105, 12639–12650.ADSCrossRefGoogle Scholar
  111. Schwartz, S. J., M. F. Thomsen, and J. T. Gosling: 1983, ‘Ions upstream of the Earth’s bow shock-A theoretical comparison of alternative source populations’. J. Geophys. Res. 88(17), 2039–2047.ADSGoogle Scholar
  112. Sentman, D., J. P. Edmiston, and L. A. Frank: 1981, ‘Instabilities of low frequency, parallel propagating electromagnetic waves in the Earth’s foreshock region’. J. Geophys. Res. 86, 7487–7497.ADSGoogle Scholar
  113. Sentman, D. D., M. F. Thomsen, S. P. Gary, W. C. Feldman, and M. M. Hoppe: 1983, ‘The oblique whistler instability in the Earth’s foreshock’. J. Geophys. Res. 88(3), 2048–2056.ADSGoogle Scholar
  114. Sibeck, D. G., T.-D. Phan, R. P. Lin, R. P. Lepping, and A. Szabo: 2002, ‘Wind observations of foreshock cavities: A case study’. J. Geophys. Res. 107(A10), 1271, doi:10.1029/2001JA007539.CrossRefGoogle Scholar
  115. Sigsbee, K., C. A. Kletzing, D. A. Gurnett, J. S. Pickett, A. Balogh, and E. Lucek: 2004a, ‘Statistical behavior of foreshock Langmuir waves observed by the Cluster Wideband Data Plasma Wave Receiver’. Ann. Geophys. 22, 2337–2344.ADSGoogle Scholar
  116. Sigsbee, K., C. A. Kletzing, D. A. Gurnett, J. S. Pickett, A. Balogh, and E. Lucek: 2004b, ‘The dependence of Langmuir wave amplitudes on position in Earth’s foreshock’. Geophys. Res. Lett. 31, L07805, doi:10.1029/2004GL019413.CrossRefGoogle Scholar
  117. Song, P. and C. T. Russell: 1999, ‘Time series data analyses in space plasmas’. Space Sci. Rev. 87, 387–463.ADSCrossRefGoogle Scholar
  118. Sonnerup, B. U. Ö. and M. Scheible: 1998, ‘Minimum and Maximum Variance Analysis’. In: G. Paschmann and P. W. Daly (eds.): Analysis Methods for Multi-Spacecraft Data, ISSI SR-001. ESA Publications Division, pp. 185–220.Google Scholar
  119. Stone, R. G. and B. T. Tsurutani (eds.): 1985, Collisionless shocks in the heliosphere: A tutorial review, Geophys. Monogr. Ser. vol 34. Washington, D.C.: American Geophysical Union.Google Scholar
  120. Thomas, V. A., D. Winske, M. F. Thomsen, and T. G. Onsager: 1991, ‘Hybrid simulation of the formation of a hot flow anomaly’. J. Geophys. Res. 96, 11625–11632.ADSGoogle Scholar
  121. Thomsen, M. F., J. T. Gosling, S. J. Bame, K. B. Quest, and C. T. Russell: 1988, ‘On the origin of hot diamagnetic cavities near the Earth’s bow shock’. J. Geophys. Res. 93(12), 11311–11325.ADSGoogle Scholar
  122. Thomsen, M. F., J. T. Gosling, S. J. Bame, and C. T. Rusell: 1985, ‘Gyrating ions and large-amplitude monochromatic MHD waves upstream of the Earth’s bow shock’. J. Geophys. Res. 90(9), 267–273.ADSGoogle Scholar
  123. Thomsen, M. F., J. T. Gosling, S. A. Fuselier, S. J. Bame, and C. T. Russell: 1986, ‘Hot, diamagnetic cavities upstream from the Earths bow shock’. J. Geophys. Res. 91, 2961–2973.ADSGoogle Scholar
  124. Treumann, R. A. and M. Scholer: 2001, ‘The magnetosphere as a plasma laboratory’. In: The Century of Space Science. Kluwer Academic, p. 1495.Google Scholar
  125. Tsurutani, B. T. and R. G. Stone (eds.): 1985, Collisionless shocks in the heliosphere: Reviews of current research, Geophys. Monogr. Ser. vol 35. Washington, D.C.: American Geophysical Union.Google Scholar
  126. Watanabe, Y. and T. Terasawa: 1984, ‘On the excitation mechanism of the low-frequency upstream waves’. J. Geophys. Res. 89(8), 6623–6630.ADSCrossRefGoogle Scholar
  127. Wong, H. K. and M. L. Goldstein: 1987, ‘Proton beam generation of whistler waves in the Earth’s foreshock’. J. Geophys. Res. 92(11), 12419–12424.ADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. P. Eastwood
    • 1
  • E. A. Lucek
    • 2
  • C. Mazelle
    • 3
  • K. Meziane
    • 4
  • Y. Narita
    • 5
  • J. Pickett
    • 6
  • R. A. Treumann
    • 7
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Space and Atmospheric Physics, The Blackett LaboratoryImperial College LondonLondonUK
  3. 3.Centre d’Etude Spatiale de RayonnementCNRS/UPS/OMPToulouseFrance
  4. 4.Physics DepartmentUniversity of New BrunswickFrederictonCanada
  5. 5.Institut für Geophysik und extraterrestrische PhysikTechnische UniversitätBraunschweigGermany
  6. 6.Department of Physics and AstronomyThe University of IowaIowa CityUSA
  7. 7.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany

Personalised recommendations