Skip to main content

Part of the book series: SOLID MECHANICS AND ITS APPLICATIONS ((SMIA,volume 135))

  • 974 Accesses

Abstract

The mechanical performance of composite materials is critically controlled by the interfacial characteristics of the reinforcing phase and the matrix material. Her we report a study on the interfacial properties of a silicon nanowirepolypropylene nanocomposite system through molecular dynamics simulations. Carbon nanotube polypropylene nanocomposite serves as a reference system for comparison. Results of a silicon nanowire pullout simulation suggest that the interfacial shear stress transfer of this novel system is comparable with corresponding interfacial shear stress of carbon nanotube system. A new atomic strain concept is formulated that allows calculation of continuum quantities directly within a discrete atomic (molecular) system. The concept is based on the Voronoi tessellation of the molecular system and calculation of atomic site strains, which connects continuum variables and atomic quantities when the later are averaged over a sufficiently large volume treated as a point of the continuum body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. P.C. LeBaron, Z. Wang and T.J. Pinnavaia, Polymer-layered silicate nanocomposites, an overview, Appl.Clay Sci. 15, 11–29 (1999).

    Article  Google Scholar 

  2. M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mat. Sci. Eng. R 28, 1–63 (2000).

    Article  Google Scholar 

  3. D. Schmidt, D. Shah and E.P. Giannelis, New advances in polymer/layered silicate nanocomposites, Current Opinion in Solid State & Mat. Sci. 6, 205–212 (2002).

    Article  Google Scholar 

  4. D. Srivastava, C. Wei and K. Cho, Nanomechanics of carbon nanotubes and composites, Appl. Mech. Rev. 56(2), 215–230 (2003).

    Article  Google Scholar 

  5. H. Rafii-Tabar, Computational modelling of thermo-machanical and transport properties of carbon nanotubes, Phys. Rep. 390, 235–452 (2004).

    Article  Google Scholar 

  6. R. Andrews and M.C. Weisenberger, Carbon nanotube polymer composites, Current Opinion in Solid State & Mat. Sci. 8, 31–37 (2004).

    Article  Google Scholar 

  7. E.T. Thostenson, C. Li and T-W. Chou, Nanocomposites in context, Comp. Sci. Techn. 65, 491–516 (2005).

    Article  Google Scholar 

  8. O. Gülseren, F. Ercolessi and E. Tosatti, Noncrystalline structures of ultrathin unsupported nanowires, Phys. Rev. Lett. 80(17), 3775–3778 (1998).

    Article  Google Scholar 

  9. X. Duan, J. Wang and Ch.M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett. 76(9), 1116–1119 (2000).

    Article  Google Scholar 

  10. O. Shenderova, D. Brenner and R.S. Ruoff, Would diamond nanorods be stronger than fullerene nanotubes? Nanolett. 3(6), 805–809 (2003).

    Google Scholar 

  11. J.W. Kang and H.J. Hwang, Molecular dynamics simulations of ultra-thin Cu nanowires, Comp. Mat. Sci. 27, 305–312 (2003).

    Article  Google Scholar 

  12. X. Wang, Ch.J. Summers and Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nanoletters 4(3), 423–426 (2004).

    MATH  Google Scholar 

  13. L.W. Yin, Y. Bando, Y.C. Zhu and M.S. Li, Controlled carbon nanotube sheathing on ultrafine InP nanowires, Appl. Phys. Lett. 84(26), 5314–5316 (2004).

    Article  Google Scholar 

  14. B. Akdim, R. Pachter, X. Duan and W. Wade Adams, Comparative theoretical study of single-wall carbon and boron-nitride nanotubes, Phys. Rev. B 67(24), 245404–1/8 (2003).

    Article  Google Scholar 

  15. Y.F. Zhang, Y.H. Tang, N. Wang, C.S. Lee, I. Bello and S.T. Lee, One-dimensional growth mechanism of crystalline silicon nanowires, J. Cryst. Growth 197, 136–140 (1999).

    Article  Google Scholar 

  16. B. Marsen and K. Sattler, fullerene-structured nanowires of silicon, Phys. Rev. B 60(16), 11 593–11 600 (1999).

    Google Scholar 

  17. R.Q. Zhang, S.T. Lee, C-K. Law, W-K. Li and B.K. Teo, silicon nanotubes. Why not? Chem. Phys. Lett. 364, 251–258 (2002).

    Article  Google Scholar 

  18. J.J.P. Steward, MOPAC 2000 Manual (Fujitsu Limited, 1999).

    Google Scholar 

  19. Y. Zhao and B.I. Yakobson, what is the ground-state structure of the thinnest Si nanowires? Phys. Rev. Lett. 91(3), 035501–1/4 (2003).

    Google Scholar 

  20. M. Menon, D. Srivastava, I. Ponomareva and L.A. Chernozatonskii, nanomechanics of silicon nanowires, Phys. Rev. B 70, 125313–1/6 (2004).

    Google Scholar 

  21. Y. Wu, Y. Cui, l. Huynh, C.J. Barrelet, D.C. Bell and C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires, Nanolett. 4(3), 433–436 (2004).

    Google Scholar 

  22. M.J.S. Dewar and C. Jie, AM1 calculations for compounds containing silicon, Organometallics 6, 1486–1490 (1987).

    Article  Google Scholar 

  23. R.J. Hardy, Formulas for determining local properties in molecular dynamics simulations: Shock waves, J. Chem. Phys. 76(1), 622–628 (1982).

    Article  MathSciNet  Google Scholar 

  24. M. Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proc. R. Soc. Lond. A 459, 2347–2392 (2003).

    Article  MATH  Google Scholar 

  25. R. Pyrz, in: Comprehensive Composite Materials,Vol. 1,edited by A. Kelly and C. Zweben (Elsevier, Oxford, 2000), pp. 465–478.

    Google Scholar 

  26. B. Bochenek and R. Pyrz, Reconstruction of random microstructures – a stochastic optimization problem, Comp. Mat. Sci. 31, 93–112 (2004).

    Article  Google Scholar 

  27. R. Pyrz and B. Bochenek, Atomic strain tensor for molecular systems, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Pyrz, R. (2006). ATOMIC-CONTINUUM TRANSITION AT INTERFACES OF SILICON AND CARBON NANOCOMPOSITE MATERIALS. In: Sadowski, T. (eds) IUTAM Symposium on Multiscale Modelling of Damage and Fracture Processes in Composite Materials. SOLID MECHANICS AND ITS APPLICATIONS, vol 135. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4566-2_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4566-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4565-3

  • Online ISBN: 978-1-4020-4566-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics