Skip to main content

EKV3.0: An advanced charge based MOS transistor model.A design-oriented MOS transistor compact model

  • Chapter
TRANSISTOR LEVEL MODELING FOR ANALOG/RF IC DESIGN

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vittoz, E. “Micropower techniques”, Design of VLSI Circuits for Telecommunication and Signal Processing, J. E. Franca and Y. P. Tsividis, Eds., Chapter 5, Prentice Hall, 1993.

    Google Scholar 

  2. Vittoz, E.; Enz, C.; Krummenacher, F. “A basic property of MOS transistors and its circuit implications”, Workshop on Compact Models - 6th Int. Conf. Modeling and Simulation of Microsystems (MSM 2003) California, USA: San Francisco, February 2003, 23-27. Charge Model/Surface Potential Model Development

    Google Scholar 

  3. Maher, M. A.; Mead, C. A. “A physical charge-controlled model for the MOS tran-sistors”, Advanced Research in VLSI, P. Losleben, Ed. Cambridge, MA: MIT Press, 1987.

    Google Scholar 

  4. Iniguez, B.; Moreno, E. G. “A physically based C-finite continuous model for small-geometry MOSFET”, IEEE Trans. Electron Dev., February 1995, 42(2), 283-7.

    Article  Google Scholar 

  5. Enz, C. C.; Krummenacher, F.;Vittoz, E. A. “An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications”, J. Analog Int. Circ. Signal Processing, 1995, 8, 83-114.

    Article  Google Scholar 

  6. Cunha, A. I. A.; Schneider, M. C.; Galup-Montoro, C. “An explicit physical model for the long-channel MOS transistor including small-signal parameters”, Solid-State Electron., November 1995, 38(11), 1945-1952.

    Article  Google Scholar 

  7. Cunha, A. I. A.; Gouveia-Filho, O.; Schneider, M. C.; Galup-Montoro, C. “A current-based model of the MOS transistor”, Proc. IEEE Int. Symp. on Circ. & Syst. (ISCAS’97), June 1997, 3, 1608-1611.

    Google Scholar 

  8. Bucher, M.; Enz, C.; Lallement, C.; Theodoloz, F.; Krummenacher, F. “Scalable GM/I based MOSFET model”, Int. Semicond. Dev. Research Symp. (ISDRS’97), Virginia: Charlottesville, December 1997, 615-618.

    Google Scholar 

  9. Tsividis, Y. “Operation and modelling of the MOS transistor”, 2nd edition, McGraw-Hill, 1999.

    Google Scholar 

  10. Bucher, M. “Analytical MOS transistor modeling for analog circuit simulation”, Ph. D. Thesis No. 2114 (1999), Swiss Federal Institute of Technology, Lausanne (EPFL) , Switzerland, 2000.

    Google Scholar 

  11. Enz, C.; Bucher, M.; Porret, A. -S.; Sallese, J. -M.; Krummenacher, F. “The foun-dations of the EKV MOS transistor charge-based model”, Workshop on Compact Models - 5th Int. Conf. Modeling and Simul. Microsystems (MSM 2002), Puerto Rico, USA: San Juan, April 2002, 666-669.

    Google Scholar 

  12. Sallese, J. -M.; Bucher, M.; Krummenacher, F.; Fazan, P. “Inversion charge lineariza-tion in MOSFET modeling and rigorous derivation of the EKV compact model”, Solid-State Electron., 2003, 47, 677-683.

    Article  Google Scholar 

  13. Gildenblat, G.; Wang, H.; Chen, T. -L.; Gu, X.; Cai, X. “SP: An advanced surface-potential-based compact MOSFET model”, IEEE J. Solid-State Circuits, September 2004, 39(9), 1394-1406.

    Article  Google Scholar 

  14. Watts, J.; McAndrew, C.; Enz, C.; Galup-Montoro, C.; Gildenblat, G.; Hu, C.; van Langevelde, R.; Miura-Mattausch, M.; Rios, R.; Sah, C. -T. “Advanced compact models for MOSFETs”, Workshop on Compact Models - Nanotech 2005, California, USA: Anaheim, May 2005, 9-12.  Polydepletion and Quantum Effects

    Google Scholar 

  15. Sallese, J. -M.; Bucher, M.; Lallement, C. “Improved analytical modelling of polysili-con depletion for CMOS circuit simulation”, Solid-State Electron., June 2000, 44(6), 905-912.

    Article  Google Scholar 

  16. Bucher, M.; Sallese, J. -M.; Lallement, C. “Accounting for quantum effects and polysilicon depletion in an analytical design-oriented MOSFET model”, IEEE Int. Conf. Simul. Semicond. Processes and Dev. (SISPAD 2001), D. Tsoukalas and C. Tsamis, Eds., Athens, Greece: Springer, September 2001, 296-299, ISBN 3-211-83708-6.

    Google Scholar 

  17. Lallement, C.; Sallese, J. -M.; Bucher, M.; Grabinski, W.; Fazan, P. “Accounting for quantum effects and polysilicon depletion from weak to strong inversion in a charge-based design-oriented MOSFET model”, IEEE Trans. Electron Dev., February 2003, 50 (2), 406-417. Charge/Transcapacitances Modelling

    Article  Google Scholar 

  18. Ward, D. E. “Charge based modeling of capacitance in MOS transistors”, Technical Report G201-11, Integrated Circuits Laboratory, Stanford University, June 1981.

    Google Scholar 

  19. Bucher, M.; Sallese, J. -M.; Lallement, C.; Grabinski, W.; Enz, C. C.; Krummenacher, F. “Extended charges modelling for deep submicron CMOS”, Int. Semicond. Device Research Symp. (ISDRS’99), Virginia: Charlottesville, December 1999, 397-400.

    Google Scholar 

  20. Bucher, M.; Enz, C.; Krummenacher, F.; Sallese, J. -M.; Lallement, C.; Porret, A. -S. “The EKV 3. 0 MOS transistor compact model: Accounting for deep submicron aspects”, (Invited Paper), Workshop on Compact Models - 5th Int. Conf. Modeling and Simul. Microsystems (MSM 2002), Puerto Rico, USA: San Juan, April 2002, 670-673. Mobility Modelling, Low-T MOS Application

    Google Scholar 

  21. Martin, P.; Bucher, M.; Enz, C. “MOSFET modeling and parameter extraction for low temperature analog circuit design”, Journal de Physique IV, 12, 2002, Pr3-51-56, Les Editions de Physique, Les Ulis, France.

    Google Scholar 

  22. Saramad, S.;Anelli, G.; Bucher, M.; Despeisse, M.; Jarron, P.; Pelloux, N.; Rivetti, A. “Modeling of an integrated active feedback preamplifier in a 0. 25 µm CMOS tech-nology at cryogenic temperatures”, IEEE Trans. Nucl. Sci., August 2003, 50(8).

    Google Scholar 

  23. Martin, P.; Bucher, M. “Comparison of 0. 35 and 0. 21 µm CMOS technologies for low temperature operation (77 K-200 K) and Analog Circuit Design”, 6th European Workshop on Low Temperature Electronics (WOLTE 6), The Netherlands: Noordwijk, June 2004, 23-26. Series Resistance, Overlap Capacitance

    Google Scholar 

  24. Cserveny, S. “Relationship between measured and intrinsic transconductances of MOSFETs”, IEEE Trans. Electron Dev., 1990, 37(11), 2413-2414.

    Article  Google Scholar 

  25. Prégaldiny, F.; Lallement, C.; Mathiot, D. “A simple efficient model of parasitic capacitances of deep-submicron LDD MOSFETs”, Solid-State Electron., 2002, 46, 2191-2198.

    Article  Google Scholar 

  26. Gildenblat, G.; Cai, X.; Chen, T. -L.; Gu, X.; Wang, H. “Reemergence of the surface potential based compact models”, IEDM Tech. Digest, 2003, 863-866.  High-Frequency and Noise Modelling of the MOSFET

    Google Scholar 

  27. Enz, C.; Cheng, Y. “MOS transistor modeling for RF IC design”, IEEE Trans. Solid-State Circuits, February 2000, 35(2), 186-201.

    Article  Google Scholar 

  28. Porret, A. -S.; Sallese, J. -M.; Enz, C. “A compact non quasi-static extension of a charge-based MOS model”, IEEE Trans. Electron Devices, 2001, 48(8), 1647-1654.

    Article  Google Scholar 

  29. Scholten, A.; “A large signal non-quasi-static MOS model for RF circuit simulation”, IEEE Int. Conf. Simul. Semicond. Processes and Dev. (SISPAD 2001), D. Tsoukalas and C. Tsamis, Eds., Athens, Greece: Springer, September 2001, 373-376, ISBN 3-211-83708-6.

    Google Scholar 

  30. Enz, C. “An MOS transistor model for RF IC design valid in all regions of operation”, IEEE Trans. Microwave Theory and Tech., 2002, 50(1), 342-359.

    Article  Google Scholar 

  31. Porret, A. -S. “Design of a low-power and low-voltage UHF transceiver integrated in a CMOS process”, Ph. D. Thesis No. 2542 (2002), Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland, 2002.

    Google Scholar 

  32. Porret, A. -S.; Enz, C. C. “Non-quasi-static (NQS) thermal noise modeling of the MOS transistor”, IEE Proc. Circuits, Dev. and Syst., 2004, 151(2), 155-166.

    Article  Google Scholar 

  33. Bucher, M.; Bazigos, A.; Nastos, N.; Papananos, Y.; Krummenacher, F.;Yoshitomi, S. “Analysis of harmonic distortion in deep submicron CMOS”, Proc. 11th IEEE Int. Conf. Electron., Circ. & Syst. (ICECS 2004), 395-398, Tel Aviv, Israel, December 2004, 13-15.

    Google Scholar 

  34. Roy, A. S.; Enz, C. C. “Compact modeling of thermal noise in the MOS transistor”, IEEE Trans. Electron Dev., April 2005, 52(4), 611-614.

    Article  Google Scholar 

  35. Yoshitomi, S. “Challenges of compact modeling for deep-submicron RF-CMOS devices”, 12th Int. Conf. Mixed Design (MIXDES 2005), Krakow, Poland, June 2005, 22-25. Transconductance Analysis

    Google Scholar 

  36. Binkley, D.; Bucher, M.; Foty, D. “Design-oriented characterization of CMOS over the continuum of inversion level and channel length”, Proc. IEEE Int. Conf. Electron., Circ. & Syst. (ICECS’2k), Kaslik, Lebanon, December 2000, 161-164.

    Google Scholar 

  37. Bucher, M.; Kazazis, D.; Krummenacher, F.; Binkley, D.; Foty, D.; Papananos, Y. “Analysis of transconductances at all levels of inversion in deep submicron CMOS”, Proc. 9th IEEE Conf. Electronics, Circ. & Syst. (ICECS 2002), Dubrovnik, Croatia, September 15-18, 2002, III, 1183-1186. Parameter Extraction

    Google Scholar 

  38. Machado, G.; Enz, C.; Bucher, M. “Estimating key parameters in the EKV MOSFET model for analogue circuit design and simulation”, Proc. IEEE Int. Symp. Circ. & Syst. (ISCAS’95), Seattle, Washington, April 30-May 3, 1995, 1588-1591.

    Google Scholar 

  39. Bucher, M.; Lallement, C.; Enz, C. “An efficient parameter extraction methodology for the EKV MOSFET model”, Proc. IEEE Int. Conf. Microelectronic Test Structures (ICMTS’96), Trento, Italy, March 25-28, 1996, 9, 145-150.

    Google Scholar 

  40. Lallement, C.; Bucher, M.; Enz, C. “Modelling and characterization of non-uniform substrate doping”, Solid-State Electronics, December 1997, 41(12), 1857-1861.

    Article  Google Scholar 

  41. Bazigos, A.; Bucher, M. “The EKV3. 0 model code and parameter extraction”, EKV Model Users’ Group Meeting and Workshop, EPFL, Lausanne, Switzerland, November 4-5, 2004. Model Development

    Google Scholar 

  42. Bucher, M.; Lallement, C.; Enz, C.; Krummenacher, F. “Accurate MOS modelling for analog circuit simulation using the EKV model”, Proc. IEEE Int. Symp. Circ. & Syst. (ISCAS’96), Atlanta, Georgia, May 1996, 703-706.

    Google Scholar 

  43. Bucher, M.; Lallement, C.; Enz, C.; Theodoloz, F.; Krummenacher, F. “The EPFL-EKV MOSFET model equations for simulation, version 2. 6”, Technical Report, Elec-tronics Laboratory, EPFL, June 1997. [Available Online:] http://legwww. epfl. ch/ekv

  44. Bucher, M.; Enz, C.; Krummenacher, F.; Sallese, J. -M.; Lallement, C.; Porret, A. -S. “The EKV3. 0 compact MOS transistor model: Accounting for deep submi-cron aspects”, Workshop on Compact Models-MSM 2002, Puerto Rico, April 2002, 670-673.

    Google Scholar 

  45. Bucher, M.; Enz, C.; Krummenacher, F.; Sallese, J. -M.; Lallement, C.; Porret, A. -S. “The EKV3. 0 compact MOS transistor model: Accounting for deep submi-cron aspects”, Workshop on Compact Models-MSM 2002, Puerto Rico, April 2002, 670-673.

    Google Scholar 

  46. Bucher, M.; Lallement, C.; Krummenacher, F.; Enz, C. “A MOS transistor model for mixed analog-digital IC design”, R. Reis and J. Jess Eds., In Design of System on a Chip. Devices & Components, Kluwer Acad. Publ., 2004, ISBN 1-4020-7928-1.

    Google Scholar 

  47. Bucher, M.; Krummenacher, F.; Bazigos, A. “The EKV3. 0 MOSFET model for advanced analog IC design”, EKV Model Users’ Group Meeting and Workshop, EPFL, Lausanne, Switzerland, November 4-5, 2004. Verilog-A Modelling

    Google Scholar 

  48. Lemaître, L.; Grabinski, W.; McAndrew, C. “Compact device modeling using Verilog-AMS and ADMS”, Electron Technol. Internet J., 2003, 2(35), 1-5, ISSN 0700-9816.

    Google Scholar 

  49. Bazigos, A.; Bucher, M.;Yoshitomi, S. “Benchmarking the EKV3. 0 MOSFET model in Verilog-A and 0. 14 µm CMOS”, Int. Conf. on Mixed Design (MIXDES 2004), Sczcecin, Poland, June 24-26, 2004, 104-109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bucher, M., Bazigos, A., Krummenacher, F., Sallese, JM., Enz, C. (2006). EKV3.0: An advanced charge based MOS transistor model.A design-oriented MOS transistor compact model. In: GRABINSKI, W., NAUWELAERS, B., SCHREURS, D. (eds) TRANSISTOR LEVEL MODELING FOR ANALOG/RF IC DESIGN. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4556-5_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4556-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-4555-4

  • Online ISBN: 978-1-4020-4556-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics