Skip to main content

THREE-GOLD CLUSTER AS PROTON ACCEPTOR IN NONCONVENTIONAL HYDROGEN BONDS O-H…Au AND N-H…Au

  • Conference paper
Recent Advances in the Theory of Chemical and Physical Systems

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 15))

Abstract

The present work extends the family of nonconventional proton acceptors to the coinage metal Au. Based on high level computations, we demonstrate the ability of the triangle three-gold cluster to behave as nonconventional proton acceptor and hence to form hydrogen bonds with conventional hydrogen bond donors. Three molecules: formic acid, alanine, and adenine, involving O-H and N-H groups as typical conventional hydrogen bond donors, are chosen for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Huggins, Thesis (University of California, 1919).

    Google Scholar 

  2. W. M. Latimer and W. H. Rodebush, J. Am. Chem. Soc. 42, 1419 (1920).

    Article  CAS  Google Scholar 

  3. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1939). See also L. Pauling, Proc. Natl. Acad. Sci. USA 14, 359 (1928).

    Google Scholar 

  4. G. N. Lewis, Valence and Structure of Atoms and Molecules (Chemical Catalog, New York, 1923).

    Google Scholar 

  5. D. Hadži and H. W. Thompson (Eds.), Hydrogen Bonding (Pergamon Press, London, 1959).

    Google Scholar 

  6. C. G. Pimentel and A. L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960).

    Google Scholar 

  7. W. C. Hamilton and J. A. Ibers, Hydrogen Bonding in Solids (Benjamin, New York, 1968).

    Google Scholar 

  8. P. A. Kollman and L. C. Allen, Chem. Rev. 72, 283 (1972).

    Article  CAS  Google Scholar 

  9. P. Schuster, G. Zundel, and C. Sandorfy (Eds.), The Hydrogen Bond. Recent Developments in Theory and Experiments (North-Holland, Amsterdam, 1976).

    Google Scholar 

  10. G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, 2nd edition (Springer, Berlin, 1994).

    Google Scholar 

  11. G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, Oxford, 1997).

    Google Scholar 

  12. S. Scheiner, Hydrogen Bonding. A Theoretical Perspective (Oxford University Press, Oxford, 1997).

    Google Scholar 

  13. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford University Press, Oxford, 1999).

    Google Scholar 

  14. P. Schuster, in Intermolecular Interactions: From Diatomics to Biopolymers, edited by B. Pullman (Wiley, Chichester, 1978). p. 363.

    Google Scholar 

  15. T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002).

    Article  CAS  Google Scholar 

  16. T. Steiner and G. R. Desiraju, Chem. Commun. 891 (1998).

    Google Scholar 

  17. M. S. Gordon and J. H. Jensen, Acc. Chem. Res. 29, 536 (1996).

    Article  CAS  Google Scholar 

  18. C. Sandorfy, Top. Curr. Chem. 120, 41 (1984).

    CAS  Google Scholar 

  19. S. Scheiner, in Pauling’s Legacy—Modern Modelling of the Chemical Bond, Vol. 6, edited by Z. B. Maksic and W. J. Orville-Thomas (Elsevier, Amsterdam, 1977). p. 571.

    Google Scholar 

  20. (a) J. E. Del Bene, in The Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998). Vol. 2, p. 1263; (b) J. E. Del Bene and M. J. T. Jordan, Int. Rev. Phys. Chem. 18, 119 (1999); (c) J. E. Del Bene, in Recent Theoretical and Experimental Advances in Hydrogen Bonded Clusters, NATO ASI Series C, Vol. 561, edited by S. S. Xantheas (Kluwer, Dordrecht, 2000). p. 309.

    Google Scholar 

  21. I. G. Kaplan, Theory of Molecular Interactions. Studies in Physical and Theoretical Chemistry, Vol. 42 (Elsevier, Amsterdam, 1986).

    Google Scholar 

  22. (a) L. Brammer, M. C. McCann, R. M. Bullock, R. K. McMullan, and P. Sherwood, Organometallics 11, 2339 (1992); (b) S. G. Kazarian, P. A. Hanley, and M. Poliakoff, J. Am. Chem. Soc. 115, 9069 (1993); (c) A. Albinati, F. Lianza, P. S. Pregosin, and B. Müller, Inorg. Chem. 33, 2522 (1994); (d) Y. Gao, O. Eisenstein, R. H. Crabtree, Inorg. Chim. Acta 254, 105 (1997); (e) L. Brammer, D. Zhao, F. T. Lapido, and J. Braddock-Wilking, Acta Crystallogr. Sect. B 53, 680 (1995); (f) D. Braga, F. Grepioni, and G. R. Desiraju, Chem. Rev. 98, 1375 (1998).

    Article  CAS  Google Scholar 

  23. (a) E. S. Shubina, N. V. Belkova, and L. M. Epstein, J. Organomet. Chem. 17, 536 (1997); (b) G. Orlova and S. Scheiner, Organometallics 17, 4362 (1998); (c) L. M. Epstein and E. S. Shubina, Ber. Bunsenges. Phys. Chem. 102, 359 (1998).

    Google Scholar 

  24. (a) L. M. Epstein and E. S. Shubina, Coord. Chem. Rev. 231, 165 (2002); (b) L. Brammer, Dalton Trans. 3145 (2003); and references therein.

    Google Scholar 

  25. (a) C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature 382, 607 (1996); (b) R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, Science 277, 1078 (1997); (c) J. J. Storhoff and C. A. Mirkin, Chem. Rev. 99, 1849 (1999); (d) Y. W. C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002); (e) S.-J. Park, T. A. Taton, C. A. Mirkin, Science 295, 1503 (2002); (f) J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, Science 301, 1884 (2003); (g) C. M. Niemeyer, Angew. Chem., Int. Ed. 40, 4129 (2001); (h) C. M. Niemeyer, W. Burger, and J. Peplies, Angew. Chem., Int. Ed. 37, 2265 (1998); (i) A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wislon, C. J. Loweth, M. P. Bruchez, Jr., G. C. Schultz, Nature 382, 609 (1996); (j) M. C. Pirrung, Angew. Chem. Int. Ed. 41, 1277 (2002); (j) M.-C. Daniel, and D. Astruc, Chem. Rev. 104, 293 (2004); (k) N. C. Seeman, Nature 421, 427 (2003); (l) H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, Science 301, 1882 (2003); and references therein.

    Article  CAS  Google Scholar 

  26. (a) W. Li, W. Haiss, S. Floate, and R. Nichols, Langmuir 15, 4875 (1999); (b) Y. J. Xiao and Y. F. Chen, Spectrochim. Acta A 55, 1209 (1999); (c) A. P. M. Camargo, H. Baumgärtel, and C. Donner, PHYSCHEMCOMM 151 (2002); and references therein.

    Article  CAS  Google Scholar 

  27. (a) L. M. Demers, M. Östblom, H. Zhang, N.-H. Jang, B. Liedberg, and C. A. Mirkin, J. Am. Chem. Soc. 124, 11248 (2002); (b) J. J. Storhoff, R. Elghanian, C. A. Mirkin, and R. L. Letsinger, Langmuir 18, 6666 (2002); (c) H. Kimura-Suda, D. Y. Petrovykh, M. J. Tarlov, and L. J. Whitman, J. Am. Chem. Soc. 125, 9014 (2003); (d) Q. Chen, D. J. Frankel, and N. V. Richardson, Langmuir 18, 3219 (2002); (e) B. Giese and D. McNaughton, J. Phys. Chem. B 125, 1112 (2002).

    Article  CAS  Google Scholar 

  28. (a) D. V. Leff, L. Brandt, and J. R. Heath, Langmuir, 12, 4723 (1996); (b) L. O. Brown and J. E. Hutchison, J. Phys. Chem. B 105, 8911 (2001); (c) M. Sastry, A. Kumar, and P. Mukherjee, Colloids Surf. A: Physicochem. Eng. Aspects 181, 255 (2001); (d) P. R. Selvakannan, S. Mandal, S. Phadtare, S. Pasricha, and M. Sastry, Langmuir 19, 3545 (2003); (e) H. Joshi, P. S. Shirude, V. Bansal, K. N. Ganesh, and M. Sastry, J. Phys. Chem. B 108, 11535 (2004).

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN 03 (Revision A.1), Gaussian, Inc., Pittsburgh, PA, 2003.

    Google Scholar 

  30. R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn, and P. A. Christiansen, J. Chem. Phys. 93, 6654 (1990).

    Article  CAS  Google Scholar 

  31. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 77, 123 (1990).

    Article  CAS  Google Scholar 

  32. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270, 299 (1985).

    Article  CAS  Google Scholar 

  33. F. Remacle and E. S. Kryachko, Adv. Quantum Chem. 47, 423 (2004).

    Article  CAS  Google Scholar 

  34. F. Remacle and E. S. Kryachko, J. Chem. Phys. 122, 044304 (2005).

    Article  CAS  Google Scholar 

  35. The triangle Au3 cluster is characterized by the electronic energy of -407.907290 (EC), -407.787835 (S), -406.420509 (HW-LA) hartree; ZPVE = 0.418 (EC), 0.391 (S), 0.398 (HW-LA) kcal/mol; enthalpy equal to -407.900617 (EC), -407.781168 (S), -406.413836 (HW-LA) hartree; entropy of 89.66 (EC), 90.51 (S), 90.97 (HW-LA) cal/mol-T; the bond lengths r(Au1-Au2) = r(Au2-Au3) = 2.654 (EC), 2.675 (S), 2.640 (HW-LA) Å, r(Au1-Au3) = 2.992 (EC), 3.110 (S), 4.975 (HW-LA) Å; and the total dipole moment dtot = 0.97 (EC), 0.84 (S), 0.37 (HW-LA) D.

    Google Scholar 

  36. E. S. Kryachko and F. Remacle, Chem. Phys. Lett. 000, 000 (2005).

    Google Scholar 

  37. Some B3LYP/6-31++G(d,p) properties of formic acide (see Figure 1 for atomic numbering): r(C1-O2) = 1.347 Å, r(C1=O3) = 1.207 Å, r(O2-H2) = 0.974 Å, r(Ci-H1) = 1.098 ∠ZCiN2H2 = 107.9°ν(O2-H2) = 3732 cm–1 (A IR = 60 km/mol), ν(O2-D2) = 2714 cm–1 (AIR =40 km/mol); δσ an(O2) = 134.8 ppm, δσ(H2) =25.4 ppm, δσan(O2) = 190.2 ppm, δσan(O2) = 9.5 ppm; the total dipole moment dtot = 1.53 D. The B3LYP/6-31++G(d,p) computational approach invoked in the present work rather accurately describes the properties of formic acid: cf. J. H. Lim, E. K. Lee, and Y. Kim, J. Phys. Chem. 101, 2233 (1997) and D. Wei, J.-F. Truchon, S. Sirois, and D. Salahub, J. Chem. Phys. 116, 6028 (2002) and references therein.

    Google Scholar 

  38. (a) J. F. Hinton and K. Wolinski in Theoretical Treatments of Hydrogen Bonding, edited by D. Hadži (Wiley, Chichester, 1997). p. 75; (b) E. D. Becker in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, New York, 1996). p. 2409; (c) T. Kar and S. Scheiner, J. Phys. Chem. A 108, 9161 (2004); and references therein.

    Google Scholar 

  39. S. Blanco, A. Lesarri, J. C. López, and J. L. Alonso, J. Am. Chem. Soc. 126, 11675 (2004).

    Article  CAS  Google Scholar 

  40. F. Remacle and E. S. Kryachko, J. Phys. Chem. B (submitted).

    Google Scholar 

  41. (a) A. K. Chandra, M. T. Nguyen, T. Uchimaru, and T. Zeegers-Huyskens, J. Phys. Chem. A 103, 8853 (1999); (b) E. S. Kryachko, M. T. Nguyen, and T. Zeegers-Huyskens, Ibid. 105, 1288, 1934 (2001); and references therein.

    Article  CAS  Google Scholar 

  42. (a) Y. Gu, T. Kar, and S. Scheiner, J. Am. Chem. Soc. 121, 9411 (1999); (b) E. S. Kryachko and T. Zeegers-Huyskens, J. Phys. Chem. A 105, 7118 (2001); (c) E. S. Kryachko and T. Zeegers-Huyskens, Ibid. 105, 7118 (2001); (d) E. S. Kryachko and T. Zeegers-Huyskens, Ibid. 106, 6832 (2002); and references therein.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

KRYACHKO, E., REMACLE, F. (2006). THREE-GOLD CLUSTER AS PROTON ACCEPTOR IN NONCONVENTIONAL HYDROGEN BONDS O-H…Au AND N-H…Au. In: JULIEN, JP., MARUANI, J., MAYOU, D., WILSON, S., DELGADO-BARRIO, G. (eds) Recent Advances in the Theory of Chemical and Physical Systems. Progress in Theoretical Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4528-X_21

Download citation

Publish with us

Policies and ethics