Skip to main content

ONE-ELECTRON PSEUDO-POTENTIAL INVESTIGATION OF Na(3p2P)Arn CLUSTERS: ELECTRONICALLY EXCITED ISOMERS AND EMISSION SPECTRA

  • Conference paper
Recent Advances in the Theory of Chemical and Physical Systems

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 15))

Abstract

We present a quantum-classical determination of stable isomers of Na*Arn clusters with an electronically excited sodium atom in 3p2P states. The excited states of Na perturbed by the argon atoms are obtained as the eigenfunctions of a single-electron operator describing the electron in the field of a Na+ Arn core, the Na+ and Ar atoms being substituted by pseudo-potentials. These pseudo-potentials include core-polarization operators to account for polarization and correlation of the inert part with the excited electron (1, 2) . The geometry optimization of the excited states is carried out via the basin-hopping method of Wales et al. (1, 2). The present study confirms the trend for small Na*Arn clusters in 3p states to form planar structures, as proposed earlier by Tutein and Mayne (4) within the framework of a first order perturbation theory on a “Diatomics in Molecules“ type model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben El Hadj Rhouma M., Berriche H., Ben Lakhdar Z., Spiegelman F., J. Chem. Phys. 116, 1839 (2002).

    Article  CAS  Google Scholar 

  2. Ben El Hadj Rhouma M., Berriche H., Ben Lakhdar Z., Spiegelman F., Int. J. Quant. Chem. 99, 495 (2004).

    Article  CAS  Google Scholar 

  3. Tutein A. B., Mayne H. R., J. Chem. Phys. 108, 308 (1998).

    Article  CAS  Google Scholar 

  4. Wales D. J., Doyle J. P. K., J. Phys. Chem. A 101, 5111 (1997).

    Article  CAS  Google Scholar 

  5. Böhmer W., Haensel R., Schwentner N., Boursey E., Chergui M., Chem. Phys. Lett. 59, 2752 (1973).

    Google Scholar 

  6. Gedanken A., Raz B., Jortner J., J. Chem. Phys. 59, 2752 (1973).

    Article  CAS  Google Scholar 

  7. Chergui M., Schwentner N., Chem. Phys. Lett. 219, 237 (1994).

    Article  CAS  Google Scholar 

  8. Resta L., Resta R., Phys. Rev. 19, 16833 (1979).

    Google Scholar 

  9. Froudakis G. E., Farantos S. C., Velegrakis M., J. Chem. Phys. 258, 13 (2000).

    Article  CAS  Google Scholar 

  10. Gaveau M. A., Briand M., Fournier P. R., Mestdagh J. M., Visticot J. P., Calvo F., Spiegelman F., Eur. Phys. J. D 21, 153 (2002).

    Article  CAS  Google Scholar 

  11. Perera L., Amar F. G., J. Chem. Phys. 93, 4884 (1990).

    Article  CAS  Google Scholar 

  12. Perera L., Amar F. G., J. Chem. Phys. 993, 4884 (1990). Fried L. E., Mukamel S., J. Chem. Phys. 996, 116 (1992).

    Article  Google Scholar 

  13. Hahn M. Y., Whetten R. L., Phys. Rev. Lett. 61, 1190 (1988).

    Article  CAS  Google Scholar 

  14. Tsoo C., Estrin D. A., Singer S. J., J. Chem. Phys. 96, 7977 (1992).

    Article  CAS  Google Scholar 

  15. Balling L. C., Wright J. J., J. Chem. Phys. 79, 2941(1983); 81, 675 (1984).

    Article  CAS  Google Scholar 

  16. Boatz J. A., Fajardo M. E., J. Chem. Phys. 101, 3472 (1994).

    Article  CAS  Google Scholar 

  17. Roncero O., Beswick J. A., Halberstadt N., Soep B., NATO ASI Series B 227, 471 (1990).

    CAS  Google Scholar 

  18. Batista V. S., Coker D. F., J Chem. Phys. 105, 2033 (1996).

    Article  Google Scholar 

  19. McCaffrey J. G., Kerins P. N., J. Chem. Phys. 106, 7885 (1997).

    Article  CAS  Google Scholar 

  20. Jungwirth P., Gerber R. B., J. Chem. Phys. 104, 5803 (1996).

    Article  CAS  Google Scholar 

  21. Kuntz P. J., in “Atom-Molecule Collision Theory” (Bernstein R.B. edr), Plenum Press, New York, 1979, p. 79; Kendrick B., Pack T., J. Chem. Phys. 102, 194 (1995).

    Google Scholar 

  22. Balling L. C., Harvey M. D., Dawson J. F., J. Chem. Phys. 69, 1670 (1978).

    Article  CAS  Google Scholar 

  23. Tam S., Fajardo M. E., J. Chem. Phys. 99, 854 (1993).

    Article  CAS  Google Scholar 

  24. Barthelat J.C., Durand Ph., Theor. Chim. Acta 38, 283 (1975).

    Article  Google Scholar 

  25. Jeung G. H., Phys. Rev. A 35, 26 (1987).

    Article  CAS  Google Scholar 

  26. Magnier S., Millié Ph., Dulieu O., Masnou-Seuuws F., J. Chem. Phys.98, 7113 (1993).

    Article  CAS  Google Scholar 

  27. Gross M., Spiegelman F., J. Chem. Phys. 108, 4148 (1998).

    Article  CAS  Google Scholar 

  28. Durand G., Duplan P., Spiegelman F., Z. Phys. D: At. Mol. Clusters 40, 177 (1997).

    Article  CAS  Google Scholar 

  29. Foucrault M., Millié Ph., Daudey J. P., J. Chem. Phys. 96, 1257 (1992).

    Article  CAS  Google Scholar 

  30. Müller W., Flesch J., Meyer W., J. Chem. Phys. 80, 3297 (1984).

    Article  Google Scholar 

  31. Ahmadi R., R⊘ggen G., J. Phys. B: At. Mol. Opt. Phys. 27, 5603 (1994).

    Article  CAS  Google Scholar 

  32. Aziz R. A., J. Chem. Phys. 99, 4518 (1993).

    Article  CAS  Google Scholar 

  33. Wales D. J., Scheraga H., Science 285, 1368 (1999).

    Article  CAS  Google Scholar 

  34. Wales D. J., Doye J. P. K., J. Chem. Phys. 101, 5111 (1997).

    CAS  Google Scholar 

  35. Northby J. A., J. Chem. Phys. 87, 6166 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

HADJ RHOUMA, M.B., LAKHDAR, Z.B., SPIEGELMAN, F. (2006). ONE-ELECTRON PSEUDO-POTENTIAL INVESTIGATION OF Na(3p2P)Arn CLUSTERS: ELECTRONICALLY EXCITED ISOMERS AND EMISSION SPECTRA. In: JULIEN, JP., MARUANI, J., MAYOU, D., WILSON, S., DELGADO-BARRIO, G. (eds) Recent Advances in the Theory of Chemical and Physical Systems. Progress in Theoretical Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4528-X_18

Download citation

Publish with us

Policies and ethics