Skip to main content

GENERALIZED RECPACCOUNTING FOR BREIT EFFECTS: URANIUM, PLUTONIUM AND SUPERHEAVY ELEMENTS 112, 113, 114

  • Conference paper
Recent Advances in the Theory of Chemical and Physical Systems

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 15))

Abstract

The Generalized Relativistic Effective Core Potential (GRECP) method is described, which allows to simulate Breit interaction and finite nuclear models by an economic way with high accuracy. The corresponding GRECPs for the uranium, plutonium, eka-mercury (E112), eka-thallium (E113) and eka-lead (E114) atoms are generated. The accuracy of these GRECPs and of the RECPs of other groups is estimated in atomic numerical SCF calculations with Coulomb two-electron interactions and point nucleus as compared to the corresponding all-electron Hartree-Fock-Dirac- Breit calculations with the Fermi nuclear charge distribution. Different nuclear models and contributions of the Breit interaction between different shells are studied employing all-electron four-component methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hofmann, S. and Münzenberg, G. Rev. Mod. Phys. 2000, 72, 733.

    Article  CAS  Google Scholar 

  2. Oganessian, Y. T. et al. Nature 1999, 400, 242.

    Article  CAS  Google Scholar 

  3. Oganessian, Y. T. Nature 2001, 413, 122.

    Article  CAS  Google Scholar 

  4. Schädel, M. (ed.). The Chemistry of Superheavy Elements (Kluwer, Dordrecht, 2003). 318 pp.

    Google Scholar 

  5. Hirao, K. and Ishikawa, Y. (eds.). Recent Advances in Relativistic Molecular Theory (World Scientific, Singapore, 2004). 328pp.

    Google Scholar 

  6. Schwerdtfeger, P. (ed.). Relativistic Electronic Structure Theory. Part 2. Applications, vol. 14 of Theoretical and Computational Chemistry (Elsevier, Amsterdam, 2004). xv+ 787 pp.

    Google Scholar 

  7. Mohr, P. J. Phys. Rep. 1997, 293, 227.

    Article  Google Scholar 

  8. Grant, I. P. and Quiney, H. M. Int. J. Quantum Chem. 2000, 80, 283.

    Article  CAS  Google Scholar 

  9. Reiher, M. and Hess, B. A. In: J. Grotendorst (ed.) Modern Methods and Algo rithms of Quantum Chemistry, vol. 1, pp. 451–477 (Jülich, 2000). [http://www.fz- juelich.de/nic-series].

  10. Shabaev, V. M. Phys. Rep. 2002, 356, 119.

    Article  CAS  Google Scholar 

  11. Labzowsky, L. N. and Goidenko, I. In: P. Schwerdtfeger (ed.) Relativistic Electronic Structure Theory. Part I. Fundamentals, pp. 401–467 (Elsevier, Amsterdam, 2002).

    Google Scholar 

  12. Visscher, L. Chem. Phys. Lett. 1996, 253, 20.

    Article  CAS  Google Scholar 

  13. Dyall, K. G. J. Comput. Chem. 2002, 23, 786.

    Article  CAS  Google Scholar 

  14. Visscher, L. J. Comput. Chem. 2002, 23, 759.

    Article  CAS  Google Scholar 

  15. Ermler, W. C., Ross, R. B., and Christiansen, P. A. Adv. Quantum Chem. 1988, 19, 139.

    Article  CAS  Google Scholar 

  16. Titov, A. V. et al. Study of parity violation effects .... This issue.

    Google Scholar 

  17. Tupitsyn, I. I., Mosyagin, N. S., and Titov, A. V. J. Chem. Phys. 1995, 103, 6548.

    Article  CAS  Google Scholar 

  18. Mosyagin, N. S., Titov, A. V., and Latajka, Z. Int. J. Quantum Chem. 1997, 63, 1107.

    Article  CAS  Google Scholar 

  19. Titov, A. V. and Mosyagin, N. S. Int. J. Quantum Chem. 1999, 71, 359.

    Article  Google Scholar 

  20. Phillips, J. C. and Kleinman, L. Phys. Rev. 1959, 116, 287.

    Article  CAS  Google Scholar 

  21. Abarenkov, I. V. and Heine, V. Philos. Mag. 1965, 12, 529.

    CAS  Google Scholar 

  22. Heine, V. and Abarenkov, I. V. Philos. Mag. 1964, 9, 451.

    CAS  Google Scholar 

  23. Titov, A. V. and Mosyagin, N. S. Structural Chem. 1995, 6, 317.

    Article  CAS  Google Scholar 

  24. Titov, A. V. and Mosyagin, N. S. Russ. J. Phys. Chem. 2000, 74, Suppl. 2, S376. [arXiv: physics/0008160].

    Google Scholar 

  25. Mosyagin, N. S., Eliav, E., Titov, A. V., and Kaldor, U. J. Phys. B 2000, 33, 667.

    Article  CAS  Google Scholar 

  26. Isaev, T. A., Mosyagin, N. S., Kozlov, M. G., Titov, A. V., Eliav, E., and Kaldor, U. J. Phys. B 2000, 33, 5139.

    Article  CAS  Google Scholar 

  27. Titov, A. V. Doctorate Thesis (Petersburg Nuclear Physics Institute, RAS, Russia, 2002).

    Google Scholar 

  28. Titov, A. V., Mitrushenkov, A. O., and Tupitsyn, I. I. Chem. Phys. Lett. 1991, 185, 330.

    Article  CAS  Google Scholar 

  29. Petrov, A. N., Mosyagin, N. S., Titov, A. V., and Tupitsyn, I. I. J. Phys. B 2004, 37, 4621.

    Article  CAS  Google Scholar 

  30. Mosyagin, N. S. and Titov, A. V. J. Chem. Phys. 2005, 122, 234106.

    Article  CAS  Google Scholar 

  31. Titov, A. V., Mosyagin, N. S., Alekseyev, A. B., and Buenker, R. J. Int. J. Quantum Chem. 2001, 81, 409.

    Article  CAS  Google Scholar 

  32. Labzowsky, L. N., Klimchitskaya, G. L., and Dmitriev, Y. Y. Relativistic Effects in the Spectra of Atomic Systems (Institute of Physics Publishing, Bristol and Philadel-phia, 1993). 340 pp.

    Google Scholar 

  33. Quiney, H. M., Grant, I. P., and Wilson, S. J. Phys. B 1987, 20, 1413.

    Article  CAS  Google Scholar 

  34. Lindroth, E., Mårtensson-Pendrill, A.-M., Ynnerman, A., and Öster, P. J. Phys. B 1989, 22, 2447.

    Article  CAS  Google Scholar 

  35. Bratzev, V. F., Deyneka, G. B., and Tupitsyn, I. I. Bull. Acad. Sci. USSR, Phys. Ser. 1977, 41, 173.

    Google Scholar 

  36. Tupitsyn, I. I. and Petrov, A. N. in 5th Session of the V.A. Fock School on Quantum and Computational Chemistry, p. 62 (Novgorod the Great, 2002).

    Google Scholar 

  37. Nash, C. S., Bursten, B. E., and Ermler, W. C. J. Chem. Phys. 1997, 106, 5133. [Erratum: JCP 111 (1999) 2347].

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

MOSYAGIN, N., PETROV, A., TITOV, A., TUPITSYN, I. (2006). GENERALIZED RECPACCOUNTING FOR BREIT EFFECTS: URANIUM, PLUTONIUM AND SUPERHEAVY ELEMENTS 112, 113, 114. In: JULIEN, JP., MARUANI, J., MAYOU, D., WILSON, S., DELGADO-BARRIO, G. (eds) Recent Advances in the Theory of Chemical and Physical Systems. Progress in Theoretical Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4528-X_11

Download citation

Publish with us

Policies and ethics