Skip to main content

[Heavy metal]-Chlorophylls Formed in Vivo During Heavy Metal Stress and Degradation Products Formed During Digestion, Extraction and Storage of Plant Material

  • Chapter
Book cover Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

This chapter discusses the occurrence, properties and relevance of chlorophyll (Chl) degradation products that are formed either in vivo in heavy metal-stressed plants or by digestion of algae in marine invertebrates, or that are formed during extraction or processing of dead plant material. The in vivo substitution of the central Mg2+ ion of chlorophyll by heavy metals constitutes an important part of the damage occurring in metalstressed plants. In Chlorophyta, this reaction varies with light intensity. In low irradiance combined with a dark phase, the light-harvesting complex II (LHC II) is the main target, while in high irradiance the LHC II is inaccessible to substitution of Mg2+. Instead, an insertion of heavy metals into the pheophytin (Phe) of the Photosystem II reaction center (PS II RC) has been proposed. In algae with different light harvesting proteins, this light-dependent difference is absent. In brown algae, Chl a in the Chl a/c LHC is always accessible to substitution of Mg2+ by heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson LA, Huff A and Smith KM (1990) Tunichlorin- spectroscopy of the naturally-occurring nickel (II)-pyropheophorbide- A complex and its derivatives. Biophys J 57 (2; part 2): 232a

    Google Scholar 

  • Andersson LA, Blackburn NJ and Smith KM (1991) Structural and spectral properties of tunichlorin, the novel nickel (II) chlorin of tunicates. Abstracts of Papers of American Chemical Society 202 (part 1, INOR section): Abstract # 139

    Google Scholar 

  • Banerjee PC, Ray MK, Koch C, Bhattacharyya S, Shivaji S and Stackebrandt E (1996) Molecular characterisation of two acidophilic heterotrophic bacteria isolated from a copper mine of India. Syst Appl Microbiol 19: 78–82

    CAS  Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C and Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta 212: 669–709

    Article  Google Scholar 

  • Bible KC, Buytendorp M, Zierath PD and Rinehart KL (1988) Tunichlorin—a nickel chlorin isolated from the Caribbean tunicate Trididemnum solidum. Proc Natl Acad Sci USA 85: 4582–4586

    Article  PubMed  CAS  Google Scholar 

  • Boucher LJ and Katz JJ (1967) Aggregation of metallochlorophylls. J Am Chem Soc 89: 4703–4708

    Article  CAS  Google Scholar 

  • Brereton RG, Rahmani A, Liang YiZ and Kvalheim OM (1994) Investigation of the allomerization reaction of chlorophyll a: Use of diode array HPLC, mass spectrometry and chemometric factor analysis for the detection of early products. Photochem Photobiol 59: 99–110

    CAS  Google Scholar 

  • Buchler JW (1997) Transition Metal and Rare Earth Porphyrin Aggregates. In: Trautwein A (ed) Bioinorganic Chemistry, Transition Metals in Biology and Their Coordination Chemistry (Research Report, Deutsche Forschungsgemeinschaft), pp 570–584. Wiley-VCH, Weinheim

    Google Scholar 

  • Burkhard R (1992) Compositions containing chlorophyll derivatives for permanent waving of hair. US patent 6,024,949

    Google Scholar 

  • Canjura FL, Watkins RH and Schwartz SJ (1999) Color improvement and metallo-chlorophyll complexes in continuous flow aseptically processed peas. J Food Sci 64: 987–990

    Article  CAS  Google Scholar 

  • Cuny P, Romano JC, Beker B and Rontani JF (1999) Comparison of photodegradation rates of chlorophyll chlorin ring and phytol side chain in phytodetritus: Is the phytyldiol versus phytol ratio (CPPI) a new biogeochemical index? J Exp Mar Biol Ecol 237: 271–290

    Article  CAS  Google Scholar 

  • De Filippis LF (1979) The effect of heavy metals on the absorption spectra of Chlorella cells and chlorophyll solutions. Z Pflanzenphysiologie 93: 129–137

    Google Scholar 

  • Downes MT, Hrstich L and Vincent WF (1993) Extraction of chlorophyll and carotenoid pigments from Antarctic benthic mats for analysis by HPLC. J Appl Phycol 5: 623–628

    Article  CAS  Google Scholar 

  • Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CN, Scherz A and Scheer H (2001) Excitation trap approach to analyze size and pigment-pigment-coupling: Reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40: 3737–3747

    Article  PubMed  CAS  Google Scholar 

  • Fischbach H and Newburger SH (1943) Spectrophotometric study of the green color in okra. J Assoc Off Agric Chem 26: 134–139

    CAS  Google Scholar 

  • Frost JR and Saleeb FZ (1999) Non-staining, acid-stable, cold-water-soluble, edible green color and compositions for preparing acidic foods and beverages. US patent 5,993,880

    Google Scholar 

  • Gauthier-Jaques A, Bortlik K, Hau J and Fay LB (2001) Improved method to track chlorophyll degradation. J Agric Food Chem 49: 1117–1122

    Article  PubMed  CAS  Google Scholar 

  • Geiken B, Masojidek M, Rizzuto M, Pompili ML and Giardi MT (1998) Incorporation of [S-35] methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Envi 21: 1265–1273

    Article  CAS  Google Scholar 

  • Gibbs PE, Burt GR, Pascoe PL, Llewellyn CA and Ryan KP (2000) Zinc, copper and chlorophyll-derivatives in the polychaete Owenia fusiformis. J Mar Biol Ass UK 80: 235–248

    Article  CAS  Google Scholar 

  • Gross RE, Pugno P and Dugger WM (1970) Observations on the mechanism of copper damage in Chlorella. Plant Physiol 46: 183–185

    PubMed  CAS  Google Scholar 

  • Hidenari I, Miki I, Takashi N, Kenji F and Yoshikazu S (1993) Preparation and determination of zinc(II) chlorophylls by reversed-phase liquid chromatography. J Chromatog 645: 259–264

    Article  Google Scholar 

  • Hiraishi A and Shimada K (2001) Aerobic anoxygenic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47: 161–180

    Article  PubMed  CAS  Google Scholar 

  • Hong F-S, Wei Z-G, Tao Y, Wan S-K, Yang Y-T, Cao X-D and Zhao G-W (1999) Distribution of rare earth elements and structure characterization of chlorophyll-lanthanum in a natural plant fern Dicranopteris dichotoma. Acta Botanica Sinica 41: 851–854 (in Chinese, abstract in English)

    CAS  Google Scholar 

  • Hynninen PH (1991) Chemistry of Chlorophylls: Modifications. In: Scheer H (ed),Chlorophylls, pp 145–210. CRC Press, Boca Raton

    Google Scholar 

  • Hyvärinen K and Hynninen PH (1999) Liquid chromatographic separation and mass spectrometric identification of chlorophyll b allomers. J Chromatography A 837: 107–116

    Article  Google Scholar 

  • Itoh S, Iwaki M, Wakao N, Yoshizu K, Aoki A and Tazaki K (1998) Accumulation of Fe, Cr, Ni metals inside cells of acidophilic bacterium Acidiphilium rubrum that produces Zn-containing bacteriochlorophyll a. Plant Cell Physiol 39: 740–744

    CAS  Google Scholar 

  • Jones ID, White RC, Gibbs E and Butler LS (1977) Estimation of zinc pheophytins, chlorophylls, and pheophytins in mixtures in diethyl ether or 80% acetone by spectrophotometry and fluor-ometry. J Agric Food Chem 73: 146–149

    Article  Google Scholar 

  • Karukstis KK (1991) Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus. In: Scheer H (ed) Chlorophylls, pp 770–97. CRC Press, Boca Raton

    Google Scholar 

  • Katoh T and Ehara T (1990) Supramolecular assembly of fucoxanthin- chlorophyll-protein complexes isolated from a brown alga, Petalonia fascia. Electron microscopic studies. Plant Cell Physiol 31: 439–47

    CAS  Google Scholar 

  • King RM and Carroll TF (1994) Aloe vera gel toothpaste. US patent 5,294,434

    Google Scholar 

  • Kishimoto N and Tano T (1987) Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage, and soils. J Gen Appl Microbiol 33: 11–25

    CAS  Google Scholar 

  • Kowalewska G and Hoffmann SK (1989) Identification of the copper porphyrin complex formed in cultures of the blue-green alga Anabaena variabilis. Acta Physiol Plant 11: 39–50

    CAS  Google Scholar 

  • Kowalewska G, Lotocka M and Latala A (1992) Formation of the copper-chlorophyll complexes in cells of phytoplankton from the Baltic Sea. Polskie Archiwum Hydrobiologii 39: 41–49

    CAS  Google Scholar 

  • Küpper H, Küpper F and Spiller M (1996) Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot 47: 259–266

    Article  Google Scholar 

  • Küpper H, Küpper F and Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58: 123–133

    Article  Google Scholar 

  • Küpper H, Spiller M and Küpper F (2000a) Photometric method for the quantification of chlorophylls and their derivatives in complex mixtures: Fitting with gauss-peak-spectra. Anal Biochem 286: 247–256

    Article  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ and McGrath SP (2000b) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212: 75–84

    Article  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G and McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52(365): 2991–2300

    Article  Google Scholar 

  • Küpper H, Dedic R, Svoboda A, Hála J and Kroneck PMH (2002a) Kinetics and efficiency of excitation energy transfer from chlorophylls, their heavy metal substituted derivatives, and pheophytins to singlet oxygen. Biochim Biophys Acta 1572: 107–113

    Google Scholar 

  • Küpper H, Setlík I, Spiller M, Küpper FC and Prásil O (2002b) Heavy metal-induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation. J Phycol 48: 429–441

    Article  Google Scholar 

  • Kuronen P, Hyvärinen K and Hynninen PH (1993) High-performance liquid chromatographic separation and isolation of the methanolic allomerization products of chlorophyll a. J Chromatography A 654: 93–104

    Article  CAS  Google Scholar 

  • Llewellyn CA, Mantoura RFC and Brereton RG (1990a) Products of chlorophyll photodegradation—1. Detection and separation. Photochem Photobiol 52: 1037–1041

    CAS  Google Scholar 

  • Llewellyn CA, Mantoura RFC and Brereton RG (1990b) Products of chlorophyll photodegradation—2. Structural identification. Photochem Photobiol 52: 1043–1047

    CAS  Google Scholar 

  • Ma LF and Dolphin D (1999) The metabolites of dietary chlorophylls. Phytochemistry 50: 195–202

    Article  CAS  Google Scholar 

  • Mahapatra NR and Banerjee PC (1996) Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains. Lett Appl Microbiol 23: 393–397

    CAS  Google Scholar 

  • Masuda T, Nagayama M, Inoue K, Ohta H, Shimada H and Takamiya K-I (1999) Magnesium insertion by magnesium chelatase in the biosynthesis of zinc bacteriochlorophyll a in an aerobic acidophilic bacterium Acidiphilium rubrum. J Biol Chem 274: 33594–33600

    Article  PubMed  CAS  Google Scholar 

  • Matin A (1999) pH homeostasis in acidophiles. Novartis Found Symp 221: 152–163

    PubMed  CAS  Google Scholar 

  • Mimuro M, Katoh T and Kawai H (1990) Spatial arrangement of pigments and their interaction in the fucoxanthin-chlorophyll a/c protein assembly (FCPA) isolated from the brown alga Dictyota dichotoma. Analysis by means of polarized spectroscopy. Biochim Biophys Acta 1015: 450–456

    Article  CAS  Google Scholar 

  • Mínguez-Mosquera MI, Gallardo-Guerrero L, Hornero-Méndez D and Garrido-Fernández J (1995) Involvement of copper and zinc ions in green staining of table olives of the variety Gordal. J Food Protect 58: 564–569

    Google Scholar 

  • Patra M and Sharma A (2000) Mercury toxicity in plants. Bot Review 66: 379–422

    Google Scholar 

  • Paulsen H, Finkenzeller B and Kühlein N (1993) Pigments induce folding of light-harvesting chlorophyll a/b-binding protein. Eur J Biochem 215: 809–816

    Article  PubMed  CAS  Google Scholar 

  • Pettit GR, Kantoci D, Doubek DL, Tucker BE, Pettit WE and Schroll RM (1993) Isolation of the nickel-chlorin chelate tunichlorin from the south-Pacific Ocean sea hare Dolabella auricularia. J Nat Pod 56: 1981–1984

    Article  CAS  Google Scholar 

  • Pfaltz A, Jaun B, Fassler A, Eschenmoser A, Jaenchen R, Gilles HH, Diekert G and Thauer RK (1982) Factor F430 from methanogenic bacteria—structure of the porphinoid ligand system. Helvetica Chimica Acta 65: 828–865

    Article  CAS  Google Scholar 

  • Prasad MNV and Hagemeyer J (eds) (1999) Heavy Metal Stress in Plants: From Molecules to Ecosystems. Springer: Berlin

    Google Scholar 

  • Prasad MNV and Strzalka K (1999) Impact of heavy metals on photosynthesis. In: Prasad MNV and Hagemeyer J (eds) Heavy Metal Stress in Plants: From Molecules to Ecosystems, pp 117–128. Springer, Berlin

    Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M and Strzalka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161: 881–889

    Article  CAS  Google Scholar 

  • Psaras GK and Manetas Y (2001) Nickel localization of the metal hyperaccumulator Thlaspi pindicum Hausskn. Ann Bot 88: 513–516

    Article  CAS  Google Scholar 

  • Psaras GK, Constantinidis TH, Cotsopoulos B and Manetas Y (2000) Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: Evidence that the metal is excluded from both guard cells and trichomes. Ann Bot 86: 73–78

    Article  CAS  Google Scholar 

  • Puckett KJ (1976) The effects of heavy metals on some aspects of lichen physiology. Can J Bot 54: 2695–2703

    Article  CAS  Google Scholar 

  • Rahmani A, Eckardt CB, Brereton R and Maxwell JR (1993) The use of liquid chromatography-mass spectroscopy to monitor the allomerisation reactions of chlorophyll a and pheophytin a: Identification of the allomers of pheophytin a. Photochem Photobiol 57: 1048–1052

    CAS  Google Scholar 

  • Rebeiz CA and Belanger FC (1984) Chloroplast biogenesis 46. Calculation of net spectral shifts induced by axial ligand coordination in metalated tetrapyrroles. Spectrochim Acta 40A: 793–806

    CAS  Google Scholar 

  • Redden AM, Thompson RJ and Deibel D (1993) Effects of short- and long-term freezing of chloropigments in cultured diatoms and bivalve digestive gland and faeces as determined by standard fluorometry and HPLC. Arch Hydrobiol 129: 67–87

    CAS  Google Scholar 

  • Rinehart KL, Kishore V, Bible KC, Sakai R, Sullins DW and Li K-M (1988) Didemnins and tunichlorin—novel natural products from the marine tunicate Trididemnum solidum. J Nat Prod 51: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Scheer H (ed) (1991) Chlorophylls, CRC Press, Boca Raton

    Google Scholar 

  • Segner WP, Ragusa TJ, Nank WK and Hoyle WC (1984) Process for the preservation of green color in canned vegetables. US patent 4,473,591

    Google Scholar 

  • Sings HL, Bible KC and Rinehart KL (1996) Acyl tunichlorins: A new class of nickel chlorins isolated from the Caribbean tunicate Trididemnum solidum. Proc Nat Acad Sci USA 93(20): 10560–10565

    Article  PubMed  CAS  Google Scholar 

  • Svec WA (1991) The distribution and extraction of the chlorophylls. In: Scheer H (ed) Chlorophylls, pp 89–102. CRC Press, Boca Raton

    Google Scholar 

  • Tonucci LH and von Elbe JH (1992) Kinetics of the formation of zinc complexes of chlorophyll derivatives. J Agric Food Chem 40: 2341–2344

    Article  CAS  Google Scholar 

  • Von Elbe JH, Huang AS, Attoe EL and Nank WK (1986) Pigment composition of conventional and veri-green canned beans. J Agric Food Chem 34: 52–54

    Article  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37: 889–893

    CAS  Google Scholar 

  • Wang Q, Lai Y, Yang L and Huang B (2001) Preliminary study of existing species of lanthanum in the spinach leaves after being cultivated with a culture solution containing lanthanum. Anal Sci 17: 789–791

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T and Kobayashi M (1988) Chlorophylls as functional molecules in photosynthesis. Molecular composition in vivo and physical chemistry in vitro. J Chem Soc Japan (Nipon Kagaku Kaishi) 1988 (issue #4): 383–395 [Note: English title of this issue was Special Articles on Coordination Chemistry of Biologically Important Substances]

    Google Scholar 

  • Watanabe T, Machida K, Suzuki H, Kobayashi M and Honda K (1985) Photoelectrochemistry of metallochlorophylls. Coordination Chem Rev 64: 207–224

    Article  CAS  Google Scholar 

  • Wei Z-G, Hong F-S and Zhao G-W (2000a) Synthesis and characterization of RE-Chlorophyll-a complexes (RE = La, Ce, Eu, Y). J Rare Earths 18: 249–253

    CAS  Google Scholar 

  • Wei Z-G, Hong F-S, Zhao G-W, Tao Y, Hu T-D, Liu T, Xie Y-N, Yin M, Li B and Yang J-H (2000b) Determination of double decker sandwich structured La-substituted chlorophyll a by EXAFS. Acta Chimica Sinica 58: 559–562

    CAS  Google Scholar 

  • White RC, Jones ID, Gibbs E and Butler LS (1977) Estimation of copper pheophytins, chlorophylls, and pheophytins in mixtures in diethyl ether. J Agric Food Chem 25: 143–146

    Article  CAS  Google Scholar 

  • Willstätter R and Stoll A (1911) Untersuchungen über Chlorophyll. XIX. Über die Chlorophyllide. Justus Liebigs Ann Chem 387: 317–386

    Google Scholar 

  • Woolley PS, Moir AJ, Hester RE and Keely BJ (1998) A comparative study of the allomerization reaction of chlorophyll a and bacteriochlorophyll a. J Chem Soc, Perkin Trans 2: 1833–1839

    Google Scholar 

  • Zychlinsky E and Matin A (1983) Cytoplasmic pH homeostasis in an acidophilic bacterium, Thiobacillus acidophilus. J Bacteriol 156: 1352–1355

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Küpper, H., Küpper, F.C., Spiller, M. (2006). [Heavy metal]-Chlorophylls Formed in Vivo During Heavy Metal Stress and Degradation Products Formed During Digestion, Extraction and Storage of Plant Material. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_5

Download citation

Publish with us

Policies and ethics