Skip to main content

Metal-substituted Bacteriochlorophylls: Novel Molecular Tools

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

Chromophore molecules have fascinated scientists for decades. As early as 1903, chlorophylls were analyzed by chromatography, a newly introduced technique at that time (Tswett, 1906). Ever since, porphyrins and hydroporphyrins and their metal complexes, such as chlorophylls and bacteriochlorophylls, have been studied extensively in the context of their roles in photosynthesis, as biological model systems, and recently, as promising sensitizers for photodynamic therapy. When increasing ring saturation from the D 4h porphyrin macrocycle symmetry to the less symmetrical hydroporphyrins (together with an additional isocyclic ring), a wealth of possibilities for experimental observations of increasing complexity and detail became available. The synergistic link between theoretical and experimental approaches has advanced not only the understanding of various (bacterio)chlorophyll functions, but has also provided tools for exploring other complex electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden RG, Parson WW, Chu ZT and Warshel A (1996) Macroscopic and microscopic estimates of the energetics of charge separation in bacterial reaction centers. In: Michel-Byerle (ed) Reaction Centers of Photosynthetic Bacteria: Structure and Dynamics, pp 105–116. Springer-Verlag, Berlin

    Google Scholar 

  • Ashur I, Brandis A, Greenwald M, Vakrat-Hagalili Y, Rosen-bach-Belkin V, Scheer H and Scherz A (2003) Control of redox transitions and oxygen species binding in Mn centers by biologically significant ligands; Model studies with [Mn]-bacteriochlorophyll a. J Am Chem Soc 125:8852–8861

    Article  PubMed  CAS  Google Scholar 

  • Atzenhofer W, Regelsberger G, Jacob U, Peschek GA, Furtmuller PG, Huber R and Obinger C (2002) The 2.0 angstrom resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese Superoxide disimitase. J Mol Biol 321:479–489

    Article  PubMed  CAS  Google Scholar 

  • Beems EM, Dubbelman TMAR, Lugtenburg J, Vanbest JA, Smeets MFMA and Boegheim JPJ (1987) Photosensitizing properties of Bacteriochlorophyllin-a and Bacteriochlorin-a, 2 derivatives of Bacteriochlorophyll-a. Photochem Photobiol 46:639–643

    PubMed  CAS  Google Scholar 

  • Bergman D and Hinze J (1996) Electronegativity and molecular properties. Angew Chem Int Ed 35:150–163

    Article  Google Scholar 

  • Besler BH, Merz KM and Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11: 431–39

    Article  CAS  Google Scholar 

  • Boucher LJ and Day VW (1977) Manganese Schiff-Base complexes 5. Synthesis and spectroscopy of some anion complexes on N, N'ethylenebis(Acetylacetone Iminato)Manganese(III). Inorg Chem 16:1360–1367

    Article  CAS  Google Scholar 

  • Brereton RG and Sanders JKM (1983) Bacteriochlorophyll a—Influence of axial coordination on reactivity and stability —design of an improved extraction procedure. J Chem Soc Perk T (I) 2:431–434

    Article  Google Scholar 

  • Brunold TC, Gamelin DR, Stemmler TL, Mandai SK, Armstrong, WH, Penner-Hahn, JE and Solomon, El (1998) Spectroscopic studies of oxidized manganese catatase and mu-oxo-bridged dimanganese(III) model complexes: Electronic structure of the active site and its relation to catalysis. J Am Chem Soc 120:8724–8738

    Article  CAS  Google Scholar 

  • Chen YH, Graham A, Potter W, Morgan J, Vaughan L, Bellnier DA, Henderson BW, Oseroff A, Dougherty TJ and Pandey RK (2002) Bacteriopurpurinimides: Highly stable and potent photosensitizers for photodynamic therapy. J Med Chem 45:255–258

    Article  PubMed  CAS  Google Scholar 

  • Chirlian LE and Francl MM (1987) Atomic charges derived from electrostatic potentials: A detailed study. J Comput Chem 8:894–905

    Article  CAS  Google Scholar 

  • Christianson DW (1997) Structural chemistry and biology of manganese metalloenzymes. Prog Biophys Mol Bio 67:217–252

    Article  CAS  Google Scholar 

  • Christoffersen RE (1972) Ab initio calculations on large molecules. Adv Quant Chem 6:333–393

    Article  CAS  Google Scholar 

  • Cioslowski J and Stefanov BB (1993) Electron flow and electronegativity equalization in the process of bond formation. J Chem Phys 99:5151–5162

    Article  CAS  Google Scholar 

  • Dismukes GC (1996) Manganese enzymes with binuclear active sites. Chem Rev 96:2909–2926

    Article  PubMed  CAS  Google Scholar 

  • Edwards WD and Zerner MC (1983) Electronic-structure of model chlorophyll systems. Int J Quant Chem 23:1407–1432

    Article  CAS  Google Scholar 

  • Facelli JC (1998) Density functional theory calculations of the structure and the N-15 and C-13 chemical shifts of methyl bacteriopheophorbide a and bacteriochlorophyll a. J Phys Chem B 102:2111–2116

    Article  CAS  Google Scholar 

  • Farber G, Keller W, kratky C, Jaun B, Pfaltz A, Spinner C, Kobelt A and Eschenmoser A (1991) Coenzyme F430 from methanogenic bacteria — complete assignment of configuration based on an X-ray-analysis of 12,13-Diepi-F430 pentamethyl ester and on NMR-spectroscopy. Helv Chim Acta 74:697–716

    Article  Google Scholar 

  • Farid RS, Moser CC and Dutton PL (1993) Electron-transfer in proteins. Curr Opin Struct Biol 3:225–233

    Article  CAS  Google Scholar 

  • Fiedor L, Rosenbachbelkin V, Sai M and Scherz A (1996) Preparation of tetrapyrrole-amino acid covalent complexes. Plant Physiol Biochem 34:393–398

    CAS  Google Scholar 

  • Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CN, Scherz A and Scheer H (2001) Excitation trap approach to analyze size and pigment-pigment coupling: Reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40:3737–3747

    Article  PubMed  CAS  Google Scholar 

  • Fluckiger S, Mittl PRE, Scapozza L, Fijten H, Folkers G, Grutter MG, Blaser K and Crameri R (2002) Comparison of the crystal structures of the human manganese Superoxide dismutase and the homologous Aspergillus fumigatus allergen at 2-angstrom resolution. J Immunol 168:1267–1272

    PubMed  CAS  Google Scholar 

  • Försterling HD and Kuhn H (1968) Projected electron density method of pi-electron systems II. Excited states. Int J Quant Chem 2:413–430

    Article  Google Scholar 

  • Försterling HD, Huber H and Kuhn H (1967) Projected electron density method of pi-electron systems. I. Electron distribution in the ground state. Int J Quant Chem 1:225–241

    Article  Google Scholar 

  • Furenlid LR, Renner MW and Fajer J (1990) EXAFS studies of Nickel(II) and Nickel(I) factor 430 M. Conformational flexibility of the F430 skeleton. J Am Chem Soc 112:8987–8989

    Article  CAS  Google Scholar 

  • Geskes C, Hartwich G, Scheer H, Mantele W and Heinze J (1995) An electrochemical and spectroelectrochemical investigation of metal-substituted bacteriochlorophyll a. J Am Chem Soc 117:7776–7783

    Article  CAS  Google Scholar 

  • Gouterman M (1959) Study of the effects of substitution on the absorption spectra of porphyrin. J Chem Phys 30:1139–1161

    Article  CAS  Google Scholar 

  • Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  • Gouterman M, Wagniere GH and Snyder LC (1963) Spectra of porphyrins. Part II. Four orbital model. J Mol Spectrosc 11:108–127

    Article  CAS  Google Scholar 

  • Grabarse W, Mahlert F, Duin EC, Goubeaud M, Shima S, Thauer RK, Lamzin V and Ermler U (2001) On the mechanism of biological methane formation: Structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J Mol Biol 309:315–330

    Article  PubMed  CAS  Google Scholar 

  • Han WG, Lovell T and Noodleman L (2002) Coupled redox potentials in manganese and iron Superoxide disimilases from reaction kinetics and density functional/electrostatics calculations. Inorg Chem 41:205–218

    Article  PubMed  CAS  Google Scholar 

  • Hanson LK (1991) Molecular orbital theory of monomer pigments. In: Scheer H (ed) Chlorophylls, pp 993–1014. CRC press, Boca Raton

    Google Scholar 

  • Hartwich G, Friese M, Scheer H, Ogrodnik A and Michel Beyerle ME (1995)Ultrafast internal-conversion in 13(2)-OH-Ni-Bacteriochlorophyll in reaction centers of Rhodobacter-sphaeroides R26. Chem Phys 197:423–434

    Article  CAS  Google Scholar 

  • Hartwich G, Fiedor L, Simonin I, Cmiel E, Schafer W, Noy D, Scherz A and Scheer H (1998a) Metal-substituted bacteriochlorophylls. 1. Preparation and influence of metal and coordination on spectra. J Am Chem Soc 120:3675–3683

    Article  CAS  Google Scholar 

  • Hartwich G, Scheer H and Michel-Beyerle ME (1998b) Electron transfer in modified bacterial photosynthetic reaction centers. Abstr Pap Am Chem S 215: U217–U217

    Google Scholar 

  • Hughes JM, Hutter MC, Reimers JR and Hush NS (2001) Modeling the bacterial photosynthetic reaction center. 4. The structural, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 123:8550–8563

    Article  PubMed  CAS  Google Scholar 

  • Hynninen PH (1991) Chemistry of chlorophylls: Modifications. In: Scheer H (ed) Chlorophylls, pp 145–209. CRC press, Boca Raton

    Google Scholar 

  • Hynninen PH and Hyvärinen K (2002) Tracing the allomerization pathways of chlorophylls by O-18-labeling and mass spectrometry. J Org Chem 67:4055–4061

    Article  PubMed  CAS  Google Scholar 

  • Kozyrev AN, Zheng G, Zhu CF, Dougherty TJ, Smith KM and Pandey RK (1996) Syntheses of stable bacteriochlorophyll-a derivatives as potential photosensitizers for photodynamic therapy. Tetrahedron Lett 37:6431–6434

    Article  CAS  Google Scholar 

  • Krueger BP, Scholes GD andFleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386

    Article  CAS  Google Scholar 

  • Kuhn H (1951) Elektronengasmodell zur quantitativen Deutung der Licht-absorption von organischen Farbstoffen II. Helv Chim Acta 34:2371–2402

    Article  CAS  Google Scholar 

  • Lever ABP, Wilshire JP and Quan SK (1977) A Manganese Phthalocyanine-dioxygen molecular adduct. J Am Chem Soc 101:3668–3669

    Article  Google Scholar 

  • Loach PA and Calvin M (1964) Oxidation states of manganese methyl phaeophorbide alpha in aqueous solution. Nature 202:343

    Article  CAS  Google Scholar 

  • Longuet-Higgins HC, Rector CW and Platt JR (1950) Molecular orbital calculations on porphine and tetrahydroporphine. J Chem Phys 18:1174–1181

    Article  CAS  Google Scholar 

  • Lubitz W, Lendzian F and Bittl R (2002) Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res 35:313–320

    Article  PubMed  CAS  Google Scholar 

  • Mercer IP, Gould IR and Klug DR (1999) A quantum mechanical/molecular mechanical approach to relaxation dynamics: Calculation of the optical properties of solvated bacteriochlorophyl-a. J Phys Chem B 103:7720–7727

    Article  CAS  Google Scholar 

  • Michel-Beyerle ME (1990) Reaction centers of photosynthetic bacteria. In: Springer Series Biophysics, 6. Springer-Verlag, Berlin

    Google Scholar 

  • Mironov AF, Kozyrev AN and Brandis A (1993) Sensitizers of second generation for photodynamic therapy of cancer based on chlorophyll and bacteriochlorophyll derivatives. In: Korppi-Tommola (ed) Laser Study of Macroscopic Biosystems, SPIE Proceedings, Vol 1922, pp 204–208. International Society for Optical Engineering

    Google Scholar 

  • Müller P, Hartwich G, Ogrodnik A and Michel-Beyerle ME (1999) Novel multipulse saturation spectroscopy for quantum yield determination of charge separation in modified photosynthetic reaction centers. Chem Phys Lett 306:239–248

    Article  Google Scholar 

  • Noy D, Fiedor L, Hartwich G, Scheer H and Scherz A (1998) Metal-substituted Bacteriochlorophylls: II. Changes in redox potentials and electronic transition energies are dominated by intramolecular electrostatic interactions. J Am Chem Soc 120:3684–3693

    Article  CAS  Google Scholar 

  • Noy D, Yerushalmi R, Brumfeld V Ashur I, Baldridge KK, Scheer H and Scherz A (2000) Optical absorption and computational studies of [Ni]-Bacteriochlorophyll-a provide a new insight into charge distribution between metal and ligands. J Am Chem Soc 122; 3937–3944

    Article  CAS  Google Scholar 

  • Pandey RK and Zheng G (2000) Porphyrins as photosensitizers in photodynamic therapy. In: KM Kadish, KM Smith and R Guilard (eds) The Porphyrin Handbook, pp 157–230. Academic Press, San Diego

    Google Scholar 

  • Parr RG and Pearson RG (1983) Absolute hardness: Companion parameter to absolute electronegativity. J Am Chem Soc, 105:7512–7516

    Article  CAS  Google Scholar 

  • Parr RG, Donnely RA, Levy M and Palke WE (1978) Electronegativity: The density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  • Pearson, RG (1988) Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg Chem, 27:734–740

    Article  CAS  Google Scholar 

  • Pennington FC, Boyd SD, Horton H, Taylor SW, Wulf DG, Katz JJ and Strain HH (1967) Reaction of Chlorophylls a and b with amines. Isocyclic ring rupture and formation of substituted chlorin-6-amides. J Am Chem Soc 89:3871–3875

    Article  CAS  Google Scholar 

  • Perdew JP, Parr RG, Levy M and Balduz JL (1982) Density-functional theory for fractional particle number: Derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  • Petke JD, Maggiora GM, Shipman LL and Christoffersen RE (1978) Stereoelectronic properties of photosynthetic and related systems—Ab initio configuration interaction calculations on ground and lower excited singlet and triplet-states of magnesium chlorin and chlorin. J Mol Spect 73:311–331

    Article  CAS  Google Scholar 

  • Petke JD, Maggiora GM, Shipman LL and Christoffersen RE (1980a) Stereoelectronic properties of photosynthetic and related systems.7. Ab initio Quantum-Mechanical characterization of the electronic-structure and spectra of chlorophyl-lide-a and bacteriochlorophyllide-a cation radicals. Photochem Photobiol 31:243–257

    CAS  Google Scholar 

  • Petke JD, Maggiora GM, Shipman LL and Christoffersen RE (1980b) Stereoelectronic properties of photosynthetic and related systems-VI. ab-initio configuration interaction calculations on the ground and lower excited singlet and triplet states of ethyl bacteriochlorophyllide a and ethyl bacteriopheophorbide a. Photochem Photobiol 32:399–414

    CAS  Google Scholar 

  • Platt JR (1950) Molecular orbital predictions of organic spectra. J Chem Phys 18:1168–1173

    Article  CAS  Google Scholar 

  • Pople JA and Beveridge DL (1970) Approximate Molecular Orbital Theory. McGraw-Hill, New York.

    Google Scholar 

  • Reed AE, Curtiss LA and Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  • Rosenbach Belkin V Chen L, Fiedor L, Tregub I, Pavlotsky F, Brumfeld V, Salomon Y and Scherz A (1996) Serine conjugates of chlorophyll and bacteriochlorophyll: Photocytotoxicity in vitro and tissue distribution in mice bearing melanoma tumors. Photochem Photobiol 64:174–181

    PubMed  CAS  Google Scholar 

  • Sanderson RT (1955) Partial charges on atoms in organic compounds. Science 121:207–210

    Article  CAS  PubMed  Google Scholar 

  • Sanderson RT (1976) Chemical Bonds and Bond Energy. Academic Press, New York

    Google Scholar 

  • Scheer H (1991) Chemistry of Chlorophylls. In: Scheer H (ed) Chlorophylls, pp 3–30. CRC press, Boca Raton

    Google Scholar 

  • Scheer H, Kammhuber N, Scherz A, Salomon Y and Brandis A (2001) Synthesis and photodynamic activity of chlorophyll and bacteriochlorophyll esters. PCT Int. Appl. WO/040232, 48 pp

    Google Scholar 

  • Scherer POJ and Fischer SF (1989) Quantum treatment of the optical-spectra and the initial electron-transfer process with the reaction renter of Rhodopseudomonas viridis. Chem Phys 131:115–127

    Article  CAS  Google Scholar 

  • Scherer POJ and Fischer SF (1990) Electronic excitations and electron transfer coupling within the bacterial reaction center based on an INDO/S-CI supermolecule approach including 615 atoms. Jerusalem Symposia on Quantum Chemistry and Biochemistry: pp 361–370

    Google Scholar 

  • Scherz A and Levanon H (1985) Optical-transition energies of porphyrins - the application of Free-Electron Molecular-Orbital approach. Mol Phys 55:923–937

    Article  CAS  Google Scholar 

  • Scherz A, Salomon Y, Fiedor L and Brandis A (1998a) Chlorophyll and bacteriochlorophyll derivatives, their preparation and pharmaceutical compositions comprising them. US Pat. Application: No. 6147195

    Google Scholar 

  • Scherz A, Salomon Y, Scheer H, Hartwich G and Brandis A (1998b) Synthetic metal-substituted bacteriochlorophyll derivatives and use thereof. PCT Int. Appl. WO/19081, 36 pp

    Google Scholar 

  • Scherz A, Solomon Y, Brandis A and Scheer H (2000) Palladium- substituted bacteriochlorophyll derivatives and use thereof. PCT Int. Appl. WO/0033833, 59 pp

    Google Scholar 

  • Scherz A, Brandis A, Mazor O, Salomon Y and Scheer H (2002) Water-soluble Bacteriochlorophyll derivatives and their pharmaceutical uses. PCT Int. Appl WO/045592, 36 pp

    Google Scholar 

  • Scholes GD, Gould IR, Cogdell RJ and Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps-acidophila. J Phys Chem B 103:2543–2553

    Article  CAS  Google Scholar 

  • Seely GR (1966) The structure and chemistry of functional groups. In: LP Vernon and GR Seely (eds) The Chlorophylls, pp 67–110. Academic Press, New York

    Google Scholar 

  • Senge MO (1992) The conformational flexibility of tetrapyrroles — current model studies and photobiological relevance. J Photochem Photobiol B 16:3–36

    Article  CAS  Google Scholar 

  • Shiemke AK, Kaplan WA, Hamilton CL, Shelnutt JA and Scott RA (1989) Structural and spectroscopic characterization of exogenous ligand-binding to isolated Factor-F430 and its configurational isomers. J Biol Chem 264:7276–7284

    PubMed  CAS  Google Scholar 

  • Shipman LL (1982) Electronic structure and function of chlorophylls and their pheophytins. In: Govindjee (ed) Photosynthesis. Academic Press, New York

    Google Scholar 

  • Simpson WT (1949) The theory of pi-electron system in porphines. J Chem Phys 17:1218–1221

    Article  CAS  Google Scholar 

  • Smith JRL and Calvin M (1966) Studies on chemical and photochemical oxidation of Bacteriochlorophyll. J Am Chem Soc 88; 4500–4506

    Article  Google Scholar 

  • Streitwieser Jr A (1961) Molecular Orbital Theory for Organic Chemists. John Wiley, New York

    Google Scholar 

  • Struck A, Cmiel E, Katheder I, Schäfer W and Scheer H (1992) Bacteriochlorophylls modified at position C-3 — long-range intramolecular interaction with position C-13.2. Biochim Biophys Acta 1101:321–328

    Article  CAS  Google Scholar 

  • Telser J, Davydov R, Horng YC, Ragsdale SW and Hoffman BM (2001) Cryoreduction of methyl-coenzyme M reductase EPR characterization of forms, MCRox 1 and MCRred 1. J Am Chem Soc 123:5853–5860

    Article  PubMed  CAS  Google Scholar 

  • Teuchner K, Stiel H, Leupold D, Scherz A, Noy D, Simonin I, Hartwich G and Scheer H (1997) Fluorescence and excited state absorption in modified pigments of bacterial photosynthesis— A comparative study of metal-substituted bacteriochlorophylls a. J Lumin 72–4:612–614

    Article  Google Scholar 

  • Thompson MA and Fajer J (1992) Calculation of bacteriochlorophyll g primary donors in photosynthetic heliobacteria. How to shift the energy of a phototrap by 2000 cm-1. J Phys Chem 96:2933–2935

    Article  CAS  Google Scholar 

  • Thompson MA and Zerner MC (1991) A theoretical examination of the electronic structure and spectroscopy of photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc 113:8210–8215

    Article  CAS  Google Scholar 

  • Tswett M (1906) Adsorptionanalyse und Chromatographiische Methode. Ber Deut Bot Ges 24:384–393

    CAS  Google Scholar 

  • Uchida K, Naito S, Soma M, Onishi T and Tamaru K (1978) New dioxygen complex of manganese phthalocyanine. J Chem Soc Chem Comm 6:217–218

    Article  Google Scholar 

  • Vakrat Y, Weiner L, Brandis A, Mazor O, Kami R, Gross S, Schreiber S, Salomon Y and Scherz A (1999) Bacteriochlorophyll derivatives: Phototoxicity, hyrophobicity and oxygen radicals production. Free Radical Bio Med 27: S129–S129

    Google Scholar 

  • Vance CK and Miller AF (1998) Simple proposal that can explain the inactivity of metal-substituted Superoxide dismutases. J Am Chem Soc 120:461–467

    Article  CAS  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893

    CAS  Google Scholar 

  • Warshel A and Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. 1. Theory. J Am Chem Soc 109:6143–6152

    Article  CAS  Google Scholar 

  • Whittaker JW (2002) Prokaryotic manganese Superoxide dismutases. Method Enzymol 349:80–90

    CAS  Google Scholar 

  • Wiberg KB, Hadad CM, Breneman CM, Laidig KE, Murcko MA and Lepage TJ (1991) The response of electrons to structural changes. Science 252:1266–1272

    Article  CAS  PubMed  Google Scholar 

  • Woolley PS, Moir AJ, Hester RE and Keely BJ (1998) A comparative study of the allomerization reaction of chlorophyll a and bacteriochlorophyll a. J Chem Soc Perk T(II) 8:1833–1839

    Article  Google Scholar 

  • Yerushalmi R (1999) Effects of axial ligands on the electronic structure and redox potentials of nickel bacteriochlorophyll-a; the groundwork of a molecular potentiometer. M.Sc. thesis, The Weizmann Institute of Science, Rehovot, Israel

    Google Scholar 

  • Yerushalmi R and Scherz A (2002) Synthetic Molecular Spring Device. WO/02073062

    Google Scholar 

  • Yerushalmi R, Noy D, Baldridge KK and Scherz A (2002) Mutual control of axial and equatorial ligands: Model studies with [Ni]- Bacteriochlorophyll-a. J Am Chem Soc 124:8406–8415

    Article  PubMed  CAS  Google Scholar 

  • Yerushalmi R, Baldridge KK and Scherz A (2003) An experimental look into sub-electron charge flow. J Am Chem Soc 125:12706–12707

    Article  PubMed  CAS  Google Scholar 

  • Yerushalmi R, Scherz A and Baldridge KK (2004) Direct experimental evaluation of charge schemes performance by a molecular charge-meter. J Am Chem Soc 126:5897–5905

    Article  PubMed  CAS  Google Scholar 

  • Zerner M and Gouterman M (1966) Porphyrins IV. Extended Hückel calculations on transition metal complexes. Theo Chim Acta 4:44–63

    Article  CAS  Google Scholar 

  • Zhang LY and Friesner RA (1998) Ab initio calculation of electronic coupling in the photosynthetic reaction center. Proc Natl Acad Sci USA 95:13603–13605

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Yerushalmi, R., Ashur, I., Scherz, A. (2006). Metal-substituted Bacteriochlorophylls: Novel Molecular Tools. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_34

Download citation

Publish with us

Policies and ethics