Skip to main content

Chlorophyll Sensitizers in Photodynamic Therapy

  • Chapter
Book cover Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

Photodynamic therapy (PDT) has proved to be a viable and interesting alternative to currently used less selective methods for palliative care of cancer and, in a limited number of cases, for curative treatment. Still, in spite of impressive progress and a few approvals for clinical applications, the great potential of PDT has not yet been fully realized because of current deficiencies of applied sensitizers and of applied treatment strategies. Introduction of chlorophyll- and bacteriochlorophyll-derived sensitizers is expected to markedly change this situation in the coming decade. In this and the following chapter we provide an updated summary of these new sensitizers, their syntheses, relevant characteristics and pharmaceutical activity in vitro and in vivo. The first chapter is focused on the general principles of photodynamic therapy with particular emphasis on the vascular-targeted approach to treatment. A general introduction is followed by a comprehensive description of chlorophyll based sensitizers. The following chapter (Chapter 33) is focused on the use of bacteriochlorophyll derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackroyd R, Kelty C, Brown N and Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Article  PubMed  CAS  Google Scholar 

  • Akhlynina TV, Jans DA, Rozenkrants A A, Statsyuk NV Balashova IY, Toth G, Pavo I, Rubin AB and Sobolev AS (1997) Nuclear targeting of chlorin e 6 enhances its photosensitizing Activity. J Biol Chem 272:20328–20331

    Article  PubMed  CAS  Google Scholar 

  • Akhlynina TV, Jans DA, Statsyuk NV Balashova IY, Toth G, Pavo I, Rosenkranz AA, Naroditsky BS and Sobolev AS (1999) Adeno-viruses synergize with nuclear localization signals to enhance nuclear delivery and photodynamic action of internalizable conjugates containing chlorin e 6. Int J Cancer 81:734–740

    Article  PubMed  CAS  Google Scholar 

  • Aksenova AA, Sebyakin YL and Mironov AF (2000) The synthesis of galactopyranosyl-substituted derivatives of pheophorbide. Rus J Bioorg Chem 26:126–129

    CAS  Google Scholar 

  • Aksenova AA, Sebyakin YL and Mironov AF (2001) Synthesis and properties of O- and S-glycosylated derivatives of pyropheophorbide alpha. Rus J Bioorg Chem 27:124–129

    Article  CAS  Google Scholar 

  • Ando T, Irie K, Koshimizu K, Shingu T, Takeda N, Takemura T, Nakajima S and Sakata I (1991a) New photosensitizers for photodynamic therapy: Syntheses of chlorin e 6 dimer and trimer. Agr Biol Chem 55:2441–2443

    CAS  Google Scholar 

  • Ando T, Suzuki Y, Geka R, Irie K, Koshimizu K, Takemura T, Nakajima S and Sakata I (1991b) New water-soluble pyropheophor-bide a derivatives as possible agents for photodynamic therapy of cancer. Tetrahedron Lett 32:5107–5110

    Article  CAS  Google Scholar 

  • Ando T, Kazuhiro I, Koshimizu K, Nakajima S, Takemura T and Sakata I (1992) A convenient synthesis of chlorin e 6 dimer and trimer. In: Spinelli P, Dal Fante M and Marchesini R (eds) Photodynamic Therapy and Biomedical Lasers, pp. 769–773. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  • Aprahamian M, Evrard S, Keller P, Tsuji M, Balboni G, Damge C and Marescaux J (1993) Distribution of pheophorbide-a in normal tissues and in experimental pancreatic cancer in rats. Anticancer Drug Design 8:101–114

    CAS  Google Scholar 

  • Bellnier DA, Henderson BW, Pandey RK, Potter WR and Dougherty TJ (1993) Murine pharmacokinetics and antitumor efficacy of the photodynamic sensitizer 2-[l-hexyloxyethyl]-2-devinyl pyropheophorbide-a. J Photochem Photobiol B-Biol 20:55–61

    Article  CAS  Google Scholar 

  • Bellnier DA, Greco WR, Loewen GM, Nava H, Oseroff AR, Pandey RK, Tsuchida T and Dougherty TJ (2003) Population pharmacokinetics of the photodynamic therapy agent 2-[l-hexyloxyethyl]-2-devinyl pyropheophorbide-a in cancer patients. Cancer Res 63:1806–1813

    PubMed  CAS  Google Scholar 

  • Belykh DV, Karmanova LP, Spirikhin LV and Kutchin AV (2002) Synthesis of chlorin e 6 amide derivatives. Mendeleev Commun:77–78

    Google Scholar 

  • Bergstrom LC, Vucenic I, Hagen IK, Chernomorsky S A and Poretz RD (1994) In vitro cytophototoxicity of lysosomotropic immunoliposomes containing pheophorbide a with human bladder carcinoma cells. J Photochem Photobiol B-Biol 24:17–23

    Article  CAS  Google Scholar 

  • Bisland SK, Singh D and Gariepy J (1999) Potentiation of chlorin e 6 photodynamic activity in vitro with peptide-based intracellular vehicles. Bioconjugate Chem 10:982–992

    Article  CAS  Google Scholar 

  • Bonnett R (1999) Photodynamic therapy in historical perspective. Rev Contemp Pharmacother 10:1–17

    CAS  Google Scholar 

  • Bonnett R (2000) Chemical aspects of photodynamic therapy. In: Phillips D, O'Brien P and Roberts S (eds) Advanced Chemistry Texts, Vol 1, pp 129–147, Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Bonnett R (2002) Progress with heterocyclic photosensitizers for the photodynamic therapy (PDT) of tumors. J Heterocycl Chem 39:455–470

    CAS  Google Scholar 

  • Bonnett R, Grahn MF, Salgado A, Turkish M, Valles MA and Williams NS (1992) Amphiphilic chlorins derived from chlorophyll a for photodynamic therapy. In: Spinelli P, Dal Fante M and Marchesini R (eds) Photodynamic Therapy and Biomedical Lasers, pp 866–869. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Bonnett R, Benzie R, Grahn MF, Salgado A and Valles MA (1994) PDT photosensitizers derived from chlorophyll a. Proc SPIE 2078:171–178

    Article  CAS  Google Scholar 

  • Boyle DG and Potter WR (1987) Photobleaching Photofrin II as a means of eliminating skin photosensitivity. Photochem Photobiol 46:97–101

    Google Scholar 

  • Boyle RW and Dolphin D (1996) Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 64:469–485

    PubMed  CAS  Google Scholar 

  • Brandis A, Kozyrev AN and Mironov AF (1992) Synthesis and study of chlorin and porphyrin dimers with ether linkage. Tetrahedron 48:6485–6494

    Article  CAS  Google Scholar 

  • Canti G, De Simone A and Korbelik M (2002) Photodynamic therapy and the immune system in experimental oncology. Photochem Photobiol Sci 1:79–80

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh PG (2002) Synthesis of chlorin e 6-transferrin and demonstration of its light-dependent in vitro breast cancer cell killing ability. Breast Cancer Res Treat 72:117–130

    Article  PubMed  CAS  Google Scholar 

  • Chapman JD, Stobbe CC, Engelhardt EL, Fenning MC, Brown DQ, Dagan A and Gatt S (1994) Exploitation of interstitial brachytherapy techniques for PDT. II. Novel photosensitizers for the treatment of solid tumors. Proc SPIE 2133:128–139

    Article  CAS  Google Scholar 

  • Chen B, Roskams T and de Witte PAM (2002) Antivascular tumor eradication by Hypericin mediated photodynamic therapy. Photochem Photobiol 76:509–513

    Article  PubMed  CAS  Google Scholar 

  • Cunderlikova B, Gangeskar L and Moan J (1999) Acid-base properties of chlorin e 6: Relation to cellular uptake. J Photochem Photobiol B-Biol 53:81–90

    Article  CAS  Google Scholar 

  • Cunderlikova B, Kongshaug M, Gangeskar L and Moan J (2000) Increased binding of chlorin e 6 to lipoproteins at low pH values. Int J Biochem Cell Biol 32:759–768

    Article  PubMed  CAS  Google Scholar 

  • Dagan A, Gatt S, Cerbu-Karabat S, Maziere J-C, Maziere C, Santus R, Engelhardt EL, Yeh KA, Stobbe CC, Fenning MC and Chapman JD (1995) Uptake by cells and photosensitizing effectiveness of novel pheophorbide derivatives in vivo. Int J Cancer 63:831–839

    Article  PubMed  CAS  Google Scholar 

  • Dai R, Shoemaker R, Farrens D, Han MJ, Kim CS and Song PS (1992) Characterization of silkworm chlorophyll metabolites as an active photosensitizer for photodynamic therapy. J Nat Prod 55:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Del Governatore M, Hamblin MR, Piccinini EE, Ugolini G and Hasan T (2000a) Targeted photodestruction of human colon cancer cells using charged 17.1A chlorin e 6 immunoconjugates. Br J Cancer 82:56–64

    Article  Google Scholar 

  • Del Governatore M, Hamblin MR, Shea CR, Rizvi I, Molpus KG, Tanabe KK and Hasan T (2000b) Experimental photoimmunotherapy of hepatic metastases of colorectal cancer with a 17.1A chlorin e 6 immunoconjugate. Cancer Res 60:4200–4205

    Google Scholar 

  • Delaey E, van Laar F, De Vos D, Kamuhabwa A, Jacobs P and de Witte P (2000) A comparative study of the photosensitizing characteristics of some cyanine dyes. J Photochem Photobiol B-Biol 55:27–36

    Article  CAS  Google Scholar 

  • Dolmans DEJGJ, Kadambi A, Hill JS, Flores KR, Gerber JN, Walker JP, Borel Rinkes IHM, Jain RK and Fukumura D (2002a) Targeting tumor vasculature and cancer cells in orthotopic breast tumor by fractionated photosensitizer dosing photodynamic therapy. Cancer Res 62:4289–4294

    CAS  Google Scholar 

  • Dolmans DEJGJ, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP, Fukumura D and Jain RK (2002b) Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res 62:2151–2156

    CAS  Google Scholar 

  • Dougherty TJ (1987) Photosensitizers: Therapy and detection of malignant tumors. Photochem Photobiol 45:879–889

    PubMed  CAS  Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J and Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  • Dougherty TJ, Sumlin AB, Greco WR, Weishaupt KR, Vaughan LA and Pandey RK (2002) The Role of the peripheral benzodiazepine receptor in photodynamic activity of certain pyropheophorbide ether photosensitizers: Albumin site II as a surrogate marker for activity. Photochem Photobiol 76:91–97

    Article  PubMed  CAS  Google Scholar 

  • Duska LR, Hamblin MR, Miller JL and Hasan T (1999) Combination photoimmunotherapy and cisplatin: Effects on human ovarian cancer ex vivo. J Natl Cancer Inst 91:1557–1563

    Article  PubMed  CAS  Google Scholar 

  • Embleton ML, Nair SP, Cookson BD and Wilson M (2002) Selective lethal photosensitization of methicillin-resistant.Staphylococcus aureus using an IgG-tin(IV) chlorin e 6 conjugate. J Antimicrob Chemother 50:857–864

    Article  PubMed  CAS  Google Scholar 

  • Evrard S, Keller P, Hajri A, Balboni G, Mensozaburgos L, Damge C, Marescaux J and Aprahamian M (1994) Experimental pancreatic cancer in the rat treated by photodynamic therapy. Br J Surg 81:1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Fabiano A-S, Allouche D, Sanejouand Y-H and Paillous N (1997) Synthesis of a new cationic pyropheophorbide derivative and studies of its aggregation process in aqueous solution. Photochem Photobiol 66:336–345

    CAS  Google Scholar 

  • Feofanov A, Grichine A, Karmakova T, Pljutinskaya A, Lebedeva V, Filyasova A, Yakubovskaya R, Mironov A, Egret-Charlier M and Vigny P (2002) Near-infrared photosensitizer based on a cycloimide derivative of chlorin p6:13,15-N-(3'-hydroxypropyl)cycloimide chlorin p 6. Photochem Photobiol 75:633–643

    Article  PubMed  CAS  Google Scholar 

  • Fernandez JM, Bilgin MD and Grossweiner LI (1997) Singlet oxygen generation by photodynamic agents. J Photochem Photobiol B-Biol 37:131–140

    Article  CAS  Google Scholar 

  • Ferrario A, Kessel D and Gomer C J (1992) Metabolic properties and photosensitizingresponsiveness of mono-1-aspartyl chlorin-e 6 in a mouse-tumor model. Cancer Res 52:2890–2893

    PubMed  CAS  Google Scholar 

  • Fiedor L, Rosenbach-Belkin V and Scherz A (1992) The stereo-specific interaction between chlorophylls and chlorophyllase. Possible implication for chlorophyll biosynthesis and degradation. J Biol Chem 267:22043–22047

    PubMed  CAS  Google Scholar 

  • Fiedor L, Gorman AA, Hamblett I, Rosenbach-Belkin V, Salomon Y, Scherz A and Tregub I (1993) A pulsed laser and pulse radiolysis study of amphiphilic chlorophyll derivatives with PDT activity toward malignant melanoma. Photochem Photobiol 58:506–511

    PubMed  CAS  Google Scholar 

  • Fiedor L, Rosenbach-Belkin V, Sai M and Scherz A (1996) Preparation of tetrapyrrole-amino acid covalent complexes. Plant Physiol Biochem 34:393–398

    CAS  Google Scholar 

  • Fingar VH (1996) Vascular effects of photodynamic therapy. J Clin Laser Med Surg 14:323–328

    PubMed  CAS  Google Scholar 

  • Folkman J (1995) Clinical applications of research on angiogenesis. New Engl J Med 333:1757–1763

    Article  PubMed  CAS  Google Scholar 

  • Foote CS (1968) Mechanisms of photosensitized oxidation. Science 162:963–970

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Yamamoto H, Crean DH, Kato H and Mang TS (1996) Localization and treatment of transformed tissues using the photodynamic sensitizer 2-[hexyloxyethyl]-2-devinyl pyropheophorbide a. Lasers Surg Med 18:157–166

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Kato H, Okunaka T, Sato M, Kuzunoki Y, Furuse K, Kawahara M, Furuoka M, Miyazawa T, Yana N, Matsui K, Okabayasi H and Horinoucti H (2001) Phase II clinical trial of PDT using ME2906 and diode laser in the treatment of central type early stage lung cancer in Japan. In: Clinical and Basic Applications of Photodynamic Medicine, p 84. IPA 8th World Congress of Photodynamic Medicine-Book of Abstracts, Vancouver

    Google Scholar 

  • Gatt S, Dagan A, Santus R, Maziere JC, Chapman JD and Engelhardt EL (1996) Phorbine derivatives and their use in the diagnosis and therapy of cancer. US Pat 5,492,924

    Google Scholar 

  • Geze M, Morliere P, Maziere JC, Smith KM and Santus R (1993) Lysosomes, a key target of hydrophobic photosensitizers proposed for photochemotherapeutic applications. J Photochem Photobiol B-Biol 20:23–35

    Article  CAS  Google Scholar 

  • Gijsens A and de Witte P (1998) Photocytotoxic action of EGF-PVA-Sn(IV)chlorin e 6 and EGF- dextran-Sn(IV)chlorin e 6 internalizable conjugates on A431 cells. Int J Oncol 13:1171–1177

    PubMed  CAS  Google Scholar 

  • Gijsens A, Missiaen L, Merlevede W and de Witte P (2000) Epidermal growth factor-mediated targeting of chlorin e 6 selectively potentiates its photodynamic activity. Cancer Res 60:2197–2202

    PubMed  CAS  Google Scholar 

  • Goff BA, Bamberg M and Hasan T (1991) Photoimmunotherapy of human ovarian-carcinoma cells ex vivo. Cancer Res 51:4762–4767

    PubMed  CAS  Google Scholar 

  • Goff BA, Bamberg M and Hasan T (1992) Experimental photodynamic treatment of ovarian-carcinoma cells with immunocon-jugates. Antib Immunoconjug Radiopharm 5:191–199

    CAS  Google Scholar 

  • Goff BA, Hermanto U, Rumbaugh J, Blake J, Bamberg M and Hasan T (1994) Photoimmunotherapy and biodistribution with an Oc 125-chlorin immunoconjugate in an in-vivo murine ovarian-cancer model. Br J Cancer 70:474–480

    PubMed  CAS  Google Scholar 

  • Gomi S, Nishizuka T, Ushiroda O, Uchida N, Takahashi H and Sumi S (1998)The structures of mono-L-aspartyl chlorin e 6 and its related compounds. Heterocycles 48:2231–2243

    Article  CAS  Google Scholar 

  • Grellier P, Santus R, Mouray E, AgmonV Maziere JC, Rigomier D, Dagan A, Gatt S and Schrevel J (1997) Photosensitized inactivation of Plasmodium falciparum- and Babesia divergens-infected erythrocytes in whole blood by lipophilic pheophorbide derivatives. Vox Sang 72:211–220

    Article  PubMed  CAS  Google Scholar 

  • Grichine A, Feofanov A, Karmakova T, Kazachkina N, Pecherskih E, Yakubovskaya R, Mironov A, Egret-Charlier M and Vigny P (2001) Influence of the substitution of 3-vinyl by 3-formyl group on the photodynamic properties of chlorin p 6: Molecular, cellular and in vivo studies. Photochem Photobiol 73:267–277

    Article  PubMed  CAS  Google Scholar 

  • Gross S, Gilead A, Mazor O, Brandis A, Schreiber S, Machluf Y, Neeman M, Scherz A and Salomon Y (2003) Selective vascular and tumor responses to photodynamic therapy (PDT) with Pd Bacteriopheophorbide (TOOKAD®): Online and offline analyses. Proc AACR 44:27

    Google Scholar 

  • Gryshuk AL, Graham A, Pandey SK, Potter W, Missert JR, Oseroff A, Dougherty TJ and Pandey RK (2002) A first comparative study of purpurinimide-based florinated vs. nonfluorinated photosensitizers for photodynamic therapy. Photochem Photobiol 76:555–559

    Article  PubMed  CAS  Google Scholar 

  • Gurinovich GP, Zorina TE, Melnov SB, Melnova NI, Gurinovich IF, Grubina LA, Sarzhevskaya MV and Cherenkevich SN (1992) Photodynamic activity of chlorin e 6 and chlorin e 6 ethylenediamide in vitro and in vivo. J Photochem Photobiol B-Biol 13:51–57

    Article  CAS  Google Scholar 

  • Hackbarth S, Horneffer V, Hillenkamp F and Röder B (2001) Photophysical properties of pheophorbide a-substituted diaminobutane polypropyleneimine dendrimer. Chem Phys 269:339–346

    Article  CAS  Google Scholar 

  • Hajri A, Coffy S, Vallat F, Evrard S, Marescaux J and Aprahamian M (1999) Human pancreatic carcinoma cells are sensitive to photodynamic therapy in vitro and in vivo. Br J Surg 86:899–906

    Article  PubMed  CAS  Google Scholar 

  • Hajri A, Wack S, Meyer C, Smith MK, Leberquier C, Kedinger M and Aprahamian M (2002) In vitro and in vivo efficacy of PhotofrinR and pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75:140–148

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B and Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: An overview. In: Packer L and Glazer AN (eds) Methods Enzymol, Vol. 186, pp. 1–85. Academic Press, London

    Google Scholar 

  • Hamblin MR, Rajadhyaksha M, Momma T, Soukos NS and Hasan T (1999) In vivo fluorescence imaging of the transport of charged chlorin e 6 conjugates in a rat orthotopic prostate tumour. Br J Cancer 81:261–268

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MR, O'Donnell DA, Murthy N, Contag CH and Hasan T (2002a) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 75:51–57

    Article  CAS  Google Scholar 

  • Hamblin MR, O'Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME and Hasan T (2002b) Polycationic photosensitizer conjugates: Effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother 49:941–951

    Article  CAS  Google Scholar 

  • Henderson BW and Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    PubMed  CAS  Google Scholar 

  • Henderson B W, Bellnier DA, Greco WR, Sharma A, Pandey RK, Vaughan LA, Weishaupt KR and Dougherty TJ (1997) An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res 57:4000–4007

    PubMed  CAS  Google Scholar 

  • Hoober JK, Sery TW and Yamamoto H (1988) Photodynamic sensitizers from chlorophyll: Purpurin-18 and chlorin p 6. Photochem Photobiol 48:579–582

    PubMed  CAS  Google Scholar 

  • Jaquinod L, Nurco D J, Medforth CJ, Pandey RK, Forsyth TP, Olmstead MM and Smith KM (1996) Synthesis and characterization of bis(chlorin)s from the mcmurry reaction of formylchlorins. AngewChem Int Ed Engl 35:1013–1016

    Article  CAS  Google Scholar 

  • Jiang X, Pandey RK and Smith KM (1995) Synthesis of nucleoside adducts of porphyrins and chlorophyll derivatives. Tetrahedron Lett 36:365–368

    Article  CAS  Google Scholar 

  • Jiang X, Pandey RK and Smith KM (1996) Nucleoside adducts of vinylporphyrins and vinylchlorins. J Chem Soc-Perkin Trans 1:1607–1615

    Article  Google Scholar 

  • Jin ZH, Miyoshi N, Ishiguro K, Takaoka K, Udagawa T, Tajiri H, Ueda K, Fukuda M and Kumakiri M (2000) Photodynamic therapy based on combined use of 5-aminolevulinic acid with a pheophorbide a derivative for murine tumors. In vivo 14:529–533

    PubMed  CAS  Google Scholar 

  • Jocham D (1998) Clinical experiences and expectations. In: Moser JG (ed) Photodynamic tumor therapy:2nd and 3rd generation photosensitizers, pp. 213–225. Harwood, London

    Google Scholar 

  • Jori G (1992) Low density lipoprotein-liposome delivery systems for tumor photosensitization in vivo. In: Henderson BW and Dougherty TJ (eds) Photodynamic Therapy, basic principles and clinical applications, pp. 173–187. Marcel Dekker, New York

    Google Scholar 

  • Jori G (1996) Tumour photosensitizers: Approaches to enhance the selectivity and efficiency of photodynamic therapy. J Photochem Photobiol B-Biol 36:87–93

    Article  CAS  Google Scholar 

  • Kassab K (2002) Photophysical and photosensitizing properties of selected cyanines. J Photochem Photobiol B-Biol 68:15–22

    Article  CAS  Google Scholar 

  • Kazi AA, Peyman GA, Unal M, Khoobehi B, Yoneya S, Mori K, Moshfeghi D and Moshfeghi AA (2000) Threshold power levels for NPe6 photodynamic therapy. Ophthalmic Surg Lasers 31:136–142

    PubMed  CAS  Google Scholar 

  • Kelbauskas L and Dietel W (2002) Internalization of aggregated photosensitizers by tumor cells: Subcellular time-resolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e 6 under femtosecond one- and two-photon excitation. Photochem Photobiol 76:686–694

    Article  PubMed  CAS  Google Scholar 

  • Kenner GW, McCombie SW and Smith KM (1973) Pyrroles and related compounds. Part XXIV. Separation and oxidative degradation of chlorophyll derivatives. J Chem Soc-Perkin Trans 1:2517–2523

    Article  Google Scholar 

  • Kessel D (1997) Pharmacokinetics of N-aspartyl chlorin e 6 in cancer patients. J Photochem Photobiol B-Biol 39:81–83

    Article  CAS  Google Scholar 

  • Kessel D and Poretz RD (2000) Sites of photodamage induced by photodynamic therapy with a chlorin e 6 triacetoxymethyl ester (CAME). Photochem Photobiol 71:94–96

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Smith KM, Pandey RK, Shiau F-Y and Henderson B (1993) Photosensitization with bacteriochlorins. Photochem Photobiol 58:200–203

    PubMed  CAS  Google Scholar 

  • Kessel D, Woodburn K, Gomer CJ, Jagerovic N and Smith KM (1995) Photosensitization with derivatives of chlorin p 6. J Photochem Photobiol B-Biol 28:13–18

    Article  CAS  Google Scholar 

  • Khadem J, Veloso AA, Tolentino F, Hasan T and Hamblin MR (1999) Photodynamic tissue adhesion with chlorin e 6 protein conjugates. Invest Ophthalmol Vis Sci 40:3132–3137

    PubMed  CAS  Google Scholar 

  • Kopecek J, Kopeckova P, Minko T, Lu Z-R and Peterson CM (2001) Water soluble polymers in tumor targeted delivery. J Control Release 74:147–158

    Article  PubMed  CAS  Google Scholar 

  • Kostenich GA, Zhuravkin IN, Furmanchuk AV and Zhavrid EA (1991) Photodynamic therapy with chlorin e 6. A morphological study of tumor damage efficiency in experiment. J Photochem Photobiol B-Biol 11:307–318

    Article  CAS  Google Scholar 

  • Kostenich GA, Zhuravkin IN, Furmanchuk AV and Zhavrid EA (1993) Sensitivity of different rat tumor strains to photodynamic treatment with chlorin e 6. J Photochem Photobiol B-Biol 17:187–194

    Article  CAS  Google Scholar 

  • Kostenich GA, Zhuravkin IN and Zhavrid EA (1994) Experimental grounds for using chlorin e 6 in the photodynamic therapy of malignant tumors. J Photochem Photobiol B-Biol 22:211–217

    Article  CAS  Google Scholar 

  • Koudinova NV, Pinthus JH, Brandis A, Brenner O, Bendel P, Ramon J, Eshhar Z, Scherz A and Salomon Y (2003) Photodynamic therapy with Pd-bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int J Cancer 104:782–789

    Article  PubMed  CAS  Google Scholar 

  • Kozyrev AN, Efimov AV Efremova OA, Perepyolkin PY and Mironov AF (1994) New chlorin and bacteriochlorin-type photosensitizers for photodynamic therapy. Proc SPIE 2325:297–305

    Article  Google Scholar 

  • Kozyrev AN, Dougherty TJ and Pandey RK (1996a) Effect of substituents in OsO4 reactions of metallochlorins regioselective synthesis of isobacteriochlorins and bacteriochlorins. Tetrahedron Lett 37:3781–3784

    Article  CAS  Google Scholar 

  • Kozyrev AN, Pandey RK, Medforth CJ, Zheng G, Dougherty TJ and Smith KM (1996b) Syntheses and unusual spectroscopic properties of novel ketobacteriochlorins. Tetrahedron Lett 37:747–750

    Article  CAS  Google Scholar 

  • Kozyrev AN, Zheng G, Zhu C, Dougherty TJ, Smith KM and Pandey RK (1996c) Syntheses of stable bacteriochlorophyll-a derivatives as potential photosensitizers for photodynamic therapy. Tetrahedron Lett 37:6431–6434

    Article  CAS  Google Scholar 

  • Kozyrev AN, Zheng G, Lazarou E, Dougherty TJ, Smith KM and Pandey RK (1997) Syntheses of emeraldin and purpurin-18 analogs as target-specific photosensitizers for photodynamic therapy. Tetrahedron Lett 38:3335-3338

    Article  CAS  Google Scholar 

  • Kozyrev AN, Alderfer JL, Dougherty TJ and Pandey RK (1998a) Synthesis of verdinochlorins: A new class of long-wavelength absorbing photosensitizers. J Chem Soc-Chem Commun:1083–1084

    Google Scholar 

  • Kozyrev AN, Dougherty TJ and Pandey RK (1998b) LiOH promoted allomerization of pyropheophorbide a. A convenient synthesis of 132-oxopyropheophorbide a and its unusual enolization. J Chem Soc-Chem Commun:481–482

    Google Scholar 

  • Kozyrev AN, Alderfer JL and Robinson BC (2003) Pirazolinyl and cyclopropyl derivatives of protoporphyrin IX and chlorins related to chlorophyll a. Tetrahedron 59:499–504

    Article  CAS  Google Scholar 

  • Krammer B (2001) Vascular effects of photodynamic therapy. Anticancer Res 21:4271–4278

    PubMed  CAS  Google Scholar 

  • Krasnovsky Jr AA, Neverov KV, Egorov SYu, Röder B and Lewald W (1990) Photophy sical studies of pheophorbide a pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence. J Photochem Photobiol B-Biol 5:245–254

    Article  Google Scholar 

  • Leach MW, Higgins RJ, Boggan JE, Lee SJ, Autry S and Smith KM (1992) Effectiveness of a lysyl chlorin p 6 / chlorin p 6 mixture in photodynamic therapy of the subcutaneous 9L glioma in the rat. Cancer Res 52:1235–1239

    PubMed  CAS  Google Scholar 

  • Leach MW, Higgins RJ, Autry S A, Boggan JE, Lee SJH and Smith KM (1993) In vitro photodynamic effects of lysyl chlorin p 6: Cell survival, localization and ultrastructural changes. Photochem Photobiol 58:653–660

    PubMed  CAS  Google Scholar 

  • Lee SJH, Jagerovic N and Smith KM (1993) Use of the chlorophyll derivative, purpurin-18, for syntheses of sensitizers for use in photodynamic therapy. J Chem Soc-Perkin Trans 1:2369–2377

    Article  Google Scholar 

  • Lobel J, Macdonald IJ, Ciesielski MJ, Barone T, Potter WR, Pollina J, Plunkett RJ, Fenstermaker RA and Dougherty TJ (2001) 2-[1 -Hexyloxyethyl]-2-devinyl pyropheophorbide-a (hpph) in a nude rat glioma model: Implications for photodynamic therapy. Lasers Surg Med 29:37–405

    Article  Google Scholar 

  • Ma LF and Dolphin D (1996) Nucleophilic reaction of 1,8-diaz-abicyclo [5.4.0]undec-7-ene and l,5-diazabicyclo[4.3.0]non-5-ene with methyl pheophorbide a. Unexpected products. Tetrahedron 52:849–860

    Article  CAS  Google Scholar 

  • Ma LF and Dolphin D (1997) Chemical modification of chlorophyll a: synthesis of new regiochemically pure benzoporphyrin and dibenzoporphyrin derivatives. Can J Chem 75:262–275

    Article  CAS  Google Scholar 

  • Ma LF and Dolphin D (1999) The metabolites of dietary chlorophylls. Phytochemistry 50:195–202

    Article  CAS  Google Scholar 

  • Macdonald IJ and Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyr Phthalocya 5:105–129

    Article  CAS  Google Scholar 

  • Macdonald IJ, Morgan J, Bellnier DA, Paszkiewicz GM, Whitaker JE, Litchfield DJ and Dougherty TJ (1999) Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobiol 70:789–797

    Article  PubMed  CAS  Google Scholar 

  • Magne ML, Rodrigues CO, Autry SA, Edwards BF, Theon AP and Madewell BR (1997) Photodynamic therapy of facial squamous cell carcinoma in cats using a new photosensitizer. Lasers Surg Med 20:202–209

    Article  PubMed  CAS  Google Scholar 

  • Mansouri S, Gossauer A, Meunier B and Paillous N (1994) Pyropheophorbide-N, N-dimethylethylenediamine conjugates as new water-soluble photonucleases. New J Chem 18:745–748

    CAS  Google Scholar 

  • Matroule JY, Bonizzi G, Morliere P, Paillous N, Santus R, Bours V and Piette J (1999) Pyropheophorbide a methyl ester-mediated photosensitization activates transcription factor NF-kappa B through the interleukin-1 receptor-dependent signalling pathway. J Biol Chem 274:2988–3000

    Article  PubMed  CAS  Google Scholar 

  • Matroule JY, Carthy CM, Graville DJ, Jolois O, Hunt DWC and Piette J (2001) Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide a methylester photosensitization. Oncogene 20:4070–4084

    Article  PubMed  CAS  Google Scholar 

  • Mayhew E, Vaughan LA, Panus A, Murray M and Henderson BW (1993) Lipid-associated methylpheophorbide-a (hexyl-ether) as a photodynamic agent in tumor bearing mice. Photochem Photobiol 58:845–851

    PubMed  CAS  Google Scholar 

  • McCaw DL, Pope ER, Payne JT, West MK, Tompson RV and Tate D (2000) Treatment of canine oral squamous cell carcinomas with photodynamic therapy. Br J Cancer 82:1297–1299

    Article  PubMed  CAS  Google Scholar 

  • McCaw DL, Payne JT, Pope ER, West MK, Tompson RV and Tate D (2001) Treatment of canine hemangiopericytomas with photodynamic therapy. Lasers Surg Med 29:23–26

    Article  PubMed  CAS  Google Scholar 

  • McMahon KS, Wieman TJ, Moore PH and Fingar VH (1994) Effects of photodynamic therapy using mono-L-aspartyl chlorin e 6 on vessel constriction, vessel leakage, and tumor response. Cancer Res 54:5374–5379

    PubMed  CAS  Google Scholar 

  • Mettath S, Shibata M, Alderfer JL, Senge MO, Smith MK, Rein R, Dougherty TJ and Pandey RK (1998) Synthesis and spectroscopic properties of novel benzochlorins derived from chlorophyll a. J Org Chem 63:1646–1656

    Article  CAS  Google Scholar 

  • Mettath SN, Li G, Srikrishnan T, Mehta R, Grossman ZD, Dougherty TJ and Pandey RK (1999) Effect of substituents in directing the formation of benzochlorins and isobacteriochlorins in porphyrin and chlorin systems. Org Lett 1:1961–1964

    Article  PubMed  CAS  Google Scholar 

  • Mettath S, Zheng G, Zielinski T, Shibata M, Alderfer JL, Dougherty TJ and Pandey RK (2000) Effect of substituents in directing the regioselective synthesis of novel pyridinium chlorins. Tetrahedron Lett 41:6289–6294

    Article  CAS  Google Scholar 

  • Mironov AF and Lebedeva VS (1998) Cyclic N-hydroxyimides in a series of chlorins and porphyrins. Tetrahedron Lett 39:905–908

    Article  CAS  Google Scholar 

  • Mironov AF, Kozyrev AN and Brandis AS (1993) Sensitizers of second generation for photodynamic therapy of cancer based on chlorophyll and bacteriochlorophyll derivatives. Proc SPIE 1922:2040–208

    Google Scholar 

  • Mironov AF, Lebedeva VS, Yakubovskaya RI, Kazachkina NI and Fomina GI (1999) Chlorins with six-membered imide ring as prospective sensitizers for cancer PDT. Proc SPIE 3563:59–67

    Article  CAS  Google Scholar 

  • Moan J (1986) Effect of bleaching of porphyrin sensitizers during photodynamic therapy. Cancer Lett 33:45–53

    Article  PubMed  CAS  Google Scholar 

  • Moan J (1990) Properties for optimal PDT sensitizers. J Photochem Photobiol B-Biol 5:521–524

    Article  CAS  Google Scholar 

  • Molpus KL, Hamblin MR, Rizvi I and Hasan T (2000) Intraperitoneal photoimmunotherapy of ovarian carcinoma xenografts in nude mice using charged photoimmunoconjugates. Gynecol Oncol 76:397–404

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Yoneya S, Ohta M, Sano A, Anzai K, Peyman GA and Moshfeghi DM (1999) Angiographic and histologic effects of fundus photodynamic therapy with a hydrophilic sensitizer (mono-L-aspartyl chlorin e 6). Ophthalmology 106:1384–1391

    Article  PubMed  CAS  Google Scholar 

  • Morliere P, Maziere JC, Santus R, Smith CD, Prinsep MR, Stobbe CC, Penning MC, Golberg JL and Chapman JD (1998) Tolyporphin: A natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res 58:3571–3578

    PubMed  CAS  Google Scholar 

  • Moser JG, Ruk A, Schwarzmaier H-J and Westphal-Frosch C (1992) Photodynamic cancer therapy: Fluorescence localization and light absorption spectra of chlorophyll-derived photosen-sitizers inside cancer cells. Opt Eng 31:1441–1446

    Article  Google Scholar 

  • Nagae T, Louie AY, Aizawa K, Ishimaru S and Wilson SE (1998) Selective targeting and photodynamic destruction of intimal hyperplasia by scavenger-receptor mediated protein-chlorin e 6 conjugates. J Cardiovasc Surg 39:709–715

    CAS  Google Scholar 

  • Nakamura H, Suzuki Y, Takeichi M, Saito T, Takayama M and Aizawa K (2002) Morphologic evaluation of the antitumor activity of photodynamic therapy (PDT) using mono-L-aspartyl chlorin e 6 (NPe6) against uterine cervical carcinoma cell lines. Int J Gynecol Cancer 12:177–186

    Article  PubMed  Google Scholar 

  • Orenstein A, Kostenich G, Roitman L, Shechtman Y, Kopolovic Y, Ehrenberg B and Malik Z (1996) A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e 6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Br J Cancer 73:937–944

    PubMed  CAS  Google Scholar 

  • Osterloh J and Vicente MGH (2002) Mechanisms of porphyrinoid localization in tumors. J Porphyrins Phthalocyanines 6:305–324

    Article  CAS  Google Scholar 

  • Pandey RK (2000) Recent advances in photodynamic therapy. J Porphyr Phthalocya 4:368–373

    Article  CAS  Google Scholar 

  • Pandey RK and Zheng G (2000) Porphyrins as photosensitizers in photodynamic therapy. In: Kadish KM, Smith KM and Guilard R (eds) The Porphyrin Handbook, Vol. 6, pp 157–230. Academic Press, San Diego

    Google Scholar 

  • Pandey RK, Bellnier DA, Smith KM and Dougherty TJ (1991a) Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy. Photochem Photobiol 53:65–72

    CAS  Google Scholar 

  • Pandey RK, Smith NW, Shiau F-Y, Dougherty TJ and Smith KM (1991b) Syntheses of cationic porphyrins and chlorins. J Chem Soc-Chem Commun:1637–1638

    Google Scholar 

  • Pandey RK, Shiau F-Y, Isaak M, Ramaprasad S, Dougherty TJ and Smith KM (1992a) Substituent effects in tetrapyrrole subunit reactivity and pinacol-pinacolone rearrangements: vic-dihydroxychlorins and vic-dihydroxybacteriochlorins. Tetrahedron Lett 33:7815–7818

    Article  CAS  Google Scholar 

  • Pandey RK, Shiau F-Y, Smith NW, Dougherty TJ and Smith KM (1992b) Syntheses of water-soluble cationic porphyrins and chlorins. Tetrahedron 48:7591–7600

    Article  CAS  Google Scholar 

  • Pandey RK, Shiau FY, Sumlin AB, Dougherty TJ and Smith KM (1992c) Structure/activity relationships among photosensitizers related to pheophorbides and bacteriopheophorbides. Bioorg Med Chem Lett 2:491–496

    Article  CAS  Google Scholar 

  • Pandey RK, Jagerovic N, Ryan JM, Dougherty TJ and Smith KM (1993) Efficient syntheses of new classes of regiochemically pure benzoporphyrin derivatives. Bioorg Med Chem Lett 3:2615–2618

    Article  CAS  Google Scholar 

  • Pandey RK, Shiau FY, Sumlin AB, Dougherty TJ and Smith KM (1994) Syntheses of new bacteriochlorins and their antitumor activity. Bioorg Med Chem Lett 4:1263–1267

    Article  CAS  Google Scholar 

  • Pandey RK, Mettath SN, Gupta S, Potter WR, Dougherty TJ and Smith KM (1995) Regioselective syntheses and some in vivo properties of ‘benzochlorin’ analogues prepared from methyl 9-deoxymesopyropheophorbide. Bioorg Med Chem Lett 5:857–860

    Article  CAS  Google Scholar 

  • Pandey RK, Constantine S, Goff BA, Kozyrev AN, Dougherty TJ and Smith KM (1996a) Chlorophyll-a derivatives in photodynamic therapy: Effect of position of heptyl ether side-chains on in vivo photosensitizing activity. Bioorg Med Chem Lett 6:105–110

    Article  CAS  Google Scholar 

  • Pandey RK, Jagerovic N, Ryan JM, Dougherty TJ and Smith KM (1996b) Syntheses and preliminary in vivo photodynamic therapy of benzoporphyrin derivatives from phylloerythrin and rhodoporphyrin XV methyl esters and aspartyl esters. Tetrahedron 52:5349–5362

    Article  CAS  Google Scholar 

  • Pandey RK, Sumlin AB, Constantine S, Aoudia M, Potter WR, Bellnier DA, Henderson BW, Rodgers MA, Smith KM and Dougherty TJ (1996c) Alkyl ether analogs of chlorophyll-a derivatives: Part 1. Synthesis, photophysical properties and photodynamic efficacy. Photochem Photobiol 64:194–204

    CAS  Google Scholar 

  • Pandey RK, Zheng G, Lee DA, Dougherty TJ and Smith KM (1996d) Comparative in vivo sensitizing efficacy of porphyrin and chlorin dimers joined with ester, ether, carbon-carbon or amide bonds. J Mol Recognit 9:118–122

    Article  CAS  Google Scholar 

  • Pandey RK, Constantine S, Tsuchida T, Zheng G, Medforth CJ, Aoudia M, Kozyrev AN, Rodgers MAJ, Kato H, Smith KM and Dougherty TJ (1997a) Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins. J Med Chem 40:2770–2779

    Article  CAS  Google Scholar 

  • Pandey RK, Isaak M, MacDonald I, Medforth CJ, Senge MO, Dougherty TJ and Smith KM (1997b) Pinacol-pinacolone rearrangements in vic-dihydroxychlorins and bacteriochlorins: Effect of substituents at the peripheral positions. J Org Chem 62:1463–1472

    Article  CAS  Google Scholar 

  • Payne JT, McCaw DL, Casteel SW, Frazier D, Rogers K and Tompson RV (1996) Pharmacokinetics of pyropheophorbidea-hexyl ester in the dog. Lasers Surg Med 18:406–409

    Article  PubMed  CAS  Google Scholar 

  • Peyman G A, Kazi AA, Moshfeghi D, Unal M, Khoobehi B, Yoneya S, Mori K and Rivera I (2000a) Threshold and retreatment parameters of NPe6 photodynamic therapy in retinal and choroidal vessels. Ophthalmic Surg Lasers 31:323–327

    CAS  Google Scholar 

  • Peyman GA, Kazi AA, Unal M, Khoobehi B, Yoneya S, Mori K and Moshfeghi DM (2000b) Problems with and pitfalls of photodynamic therapy. Ophthalmology 107:29–35

    Article  CAS  Google Scholar 

  • Prinsep MR, Caplan FR, Moore RE, Patterson GML and Smith CD (1992) Tolyporphin, a novel multidrug resistance reversing agent from the blue-green alga Tolypothrix nodosa. J Am Chem Soc 114:385–387

    Article  CAS  Google Scholar 

  • RadaPharma (2002) (http://www.radapharma.ru/publications)

    Google Scholar 

  • Regillo CD (2000) Update on photodynamic therapy. Cur Opin Ophthalm 11:166–170

    Article  CAS  Google Scholar 

  • Reiners JJ, Caruso JA, Mathieu P, Chelladurai B, Yin XM and Kessel D (2002) Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage. Cell Death Differ 9:934–944

    Article  PubMed  CAS  Google Scholar 

  • Roberts WG and Hasan T (1992) Role of neovasculature and vascular-permeability on the tumor retention of photodynamic agents. Cancer Res 52:924–930

    PubMed  CAS  Google Scholar 

  • Röder B (1998) Pheophorbides. In: Moser JG (ed) Photodynamic tumor therapy:2nd and 3rd generation photosensitizers, pp. 35–41. Harwood, London

    Google Scholar 

  • Roehrs S, Ruebner A, Hartwich G, Scheer H and Moser JG (1995) Peripheral substitution of pheophorbides and bacteriopheophorbides to promote inclusion into inert carrier systems for PDT. Proc SPIE 2625:333–338

    Article  Google Scholar 

  • Ronn AM (1999) Pharmacokinetics in photodynamic therapy. Rev Contemp Pharmaco 10:39–46

    CAS  Google Scholar 

  • Rosenbach-Belkin V, Chen L, Fiedor L, Tregub I, Pavlotsky F, Brumfeld V, Salomon Y and Scherz A (1996) Serine conjugates of chlorophyll and bacteriochlorophyll: Photocytotoxicity in vitro and tissue distribution in mice bearing melanoma tumors. Photochem Photobiol 64:174–181

    PubMed  CAS  Google Scholar 

  • Rungta A, Zheng G, Missert JR, Potter WR, Dougherty TJ and Pandey RK (2000) Purpurinimides as photosensitizers: Effect of the presence and position of the substituents in the in vivo photodynamic efficacy. Bioorg Med Chem Lett 10:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Sahai D, Lo J-L, Hagen IK, Bergstrom L, Chernomorsky S and Poretz RD (1993) Metabolically convertible lipophilic derivatives of pH-sensitive amphipathic photosensitizers. Photochem Photobiol 58:803–808

    PubMed  CAS  Google Scholar 

  • Saito T, Hayashi J and Aizawa K (1998) Acute effects of photodynamic treatment on elastic fibre network in atherosclerotic plaques of rabbit aorta. Lasers Med Sci 13:126–131

    Article  Google Scholar 

  • Savitskiy VP, Zorin VP and Potapnev MP (2002) Selective phototoxicity of chlorin-e 6 derivatives toward leukemic cells. Exp Oncol 24:142–144

    CAS  Google Scholar 

  • Scheer H, Kammhuber N, Scherz A, Brandis A and Salomon Y (2001) Synthesis and photodynamic activity of chlorophyll and bacteriochlorophyll esters. PCT Pat WO01/40232, 48 pp

    Google Scholar 

  • Scherz A, Salomon Y and Fiedor L (1994) Chlorophyll and bacteriochlorophyll derivatives, their preparation and pharmacological compositions comprising them as photosensitizers for photodynamic therapy. EP Appl 584552, 32 pp

    Google Scholar 

  • Schnitzer JE (1998) Vascular targeting as a strategy for cancer therapy. New Engl J Med 339:472–474

    Article  PubMed  CAS  Google Scholar 

  • Schreiber S, Gross S, Brandis A, Harmelin A, Rosenbach-Belkin V, Scherz A and Salomon Y (2002) Local photodynamic therapy (PDT) of rat C6 glioma xenografts with Pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery. Int J Cancer 99:279–285

    Article  PubMed  CAS  Google Scholar 

  • Selbo PK, Hogset A, Prasmickaite L and Berg K (2002) Photochemical internalization: A novel drug delivery system. Tumor Biol 23:103–112

    Article  CAS  Google Scholar 

  • Shevchuk IN, Chekulaeva LV and Chekulaev VA (2002) Influence of pH and glucose administration on the phototoxicity of chlorin-e 6 towards Ehrlich carcinoma cells. Exp Oncol 24:135–141

    CAS  Google Scholar 

  • Sheyhedin I, Aizawa K, Araake M, Kumasaka H, Okunaka T and Kato H (1998) The effects of serum on cellular uptake and phototoxicity of mono-L-aspartyl chlorin e 6 (NPe6) in vitro. Photochem Photobiol 68:110–114

    Article  PubMed  CAS  Google Scholar 

  • Smith CD, Prinsep MR, Caplan FR, Moore RE and Patterson GML (1994) Reversal of multiple-drug resistance by topyporphyn, a novel cyanobacterial natural product. Oncol Res 6:211–218

    PubMed  CAS  Google Scholar 

  • Smith KM, Lee S-J, Shiau F-Y, Pandey RK and Jagerovic N (1992) Syntheses of chlorin and bacteriochlorin-type photosensitizers for photodynamic therapy. In: Spinelli P, Dal Fante M and Marchesini R (eds) Photodynamic Therapy and Biomedical Lasers, pp. 769–773. Elsevier Science Publishers B.V., Amsterdam

    Google Scholar 

  • Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS and Hasan T (1998) Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 42:2595–2601

    PubMed  CAS  Google Scholar 

  • Spikes JD and Bommer JC (1991) Chlorophyll and related pigments as photosensitizers in biology and medicine. In: Scheer H (ed) Chlorophylls, pp. 1181–1204. CRC Press, Boca Raton

    Google Scholar 

  • Spikes JD and Bommer JC (1993) Photosensitizing properties of mono-L-aspartyl chlorin e 6 (Npe6): A candidate sensitizer for the photodynamic therapy of tumors. J Photochem Photobiol B-Biol 17:135–143

    Article  CAS  Google Scholar 

  • Strakhovskaya MG, Belenikina NS, Ivanova EV, Chemeris YK and Stranadko EF (2002) The photodynamic inactivation of the yeast Candida guilliermondii in the presence of photodithazine. Microbiology 71:298–301

    Article  CAS  Google Scholar 

  • Sullivan LG, Hasan T, Wright M, Mankin HJ and Towle CA (2002) Photodynamic treatment has chondroprotective effects on articular cartilage. J Orthop Res 20:241–248

    Article  PubMed  Google Scholar 

  • Sun X and Leung WN (2002) Photodynamic therapy with pyropheophorbide-a methyl ester in human lung carcinoma cancer cell: Efficacy, localization and apoptosis. Photochem Photobiol 75:644–651

    Article  PubMed  CAS  Google Scholar 

  • Svaasand LO and Potter WR (1992) The Implications of photobleaching for photodynamic therapy. In: Henderson BW and Dougherty TJ (eds) Photodynamic Therapy: Basic Principles and Clinical Applications, pp. 369–385. Marcel Dekker, New York

    Google Scholar 

  • Taber SW, Fingar VH, Coots CT and Wieman TJ (1998) Photodynamic therapy using mono-L-aspartyl chlorin e 6 (Npe6) for the treatment of cutaneous disease: A phase I clinical study. Clin Cancer Res 4:2741–2746

    PubMed  CAS  Google Scholar 

  • Tanielian C, Kobayashi M and Wolff C (2001) Mechanism of photodynamic activity of pheophorbides. J Biomed Opt 6:252–256

    Article  PubMed  CAS  Google Scholar 

  • Tauraytis VA, Shishporenok SI, Grubina LA, Sarzhevskaya MV Gurinovich IF, Gurinovich GA and Matulis AA (1992) Estimation of possible applications of the photodynamic effect in rheumatology. Biofizika 37:345–351

    Google Scholar 

  • Tregub I, Schmidt-Sole J, DeJordy J, Rosenbach-Belkin V, Brumfeld V Fiedor L, Salomon Y and Scherz A (1992) Application of chlorophyll and bacteriochlorophyll derivatives to PDT of malignant melanoma. In: Holick MF and Kligman AM (eds) Biologic Effects of Light, pp. 354–361. Walter de Gruyter, Berlin-New York

    Google Scholar 

  • Vicente MGH and Smith KM (1991) Vilsmeier reactions of porphyrins and chlorins with 3-(dimethylamino)acrolein to give meso-(2-formylvinyl)porphyrins: New syntheses of benzochlorins, benzoisobacteriochlorins, and benzobacteriochlorins and reductive coupling of porphyrins and chlorins using low-valent titanium complexes. J Org Chem 56:4407–4418

    Article  CAS  Google Scholar 

  • Wongsinkongman P, Brossi A, Wang HK, Bastow KF and Lee KH (2002) Antitumor agents. Part 209: Pheophorbide-a derivatives as photo-independent cytotoxic agents. Bioorg Med Chem 10:583–591

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Shibuya H, Okunaka T, Aizawa K and Kato H (1999) Fibrin plugging as a cause of microcirculatory occlusion during photodynamic therapy. Lasers Med Sci 14:129–135

    Article  Google Scholar 

  • Zenkevich E, Sagun E, Knyukshto V, Shulga A, Mironov A, Efremova O, Bonnett R, Songca SP and Kassem M (1996) Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J Photochem Photobiol B-Biol 33:171–180

    Article  CAS  Google Scholar 

  • Zeug A, Zimmermann J, Röder B, Lagorio MG and San Roman E (2002) Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water. Photochem Photobiol Sci 1:198–203

    Article  PubMed  CAS  Google Scholar 

  • Zhang L and Xu DY (1999) Synthesis of chlorin e 6-6-amide derivatives. Chin J Org Chem 19:424–430

    CAS  Google Scholar 

  • Zheng G, Kozyrev AN, Dougherty TJ, Smith KM and Pandey RK (1996) Synthesis of novel benzobacteriopurpurins by Diels-Alder cycloaddition. Chem Lett:1119–1120

    Google Scholar 

  • Zheng G, Aoudia M, Lee D, Rodgers MA, Smith KM, Dougherty TJ and Pandey RK (2000a) Chlorin-based symmetrical and unsymmetrical dimers with amide linkages: Effect of the substituents on photodynamic and photophysical properties. J Chem Soc-Perkin Trans 1:3113–3121

    Article  Google Scholar 

  • Zheng G, Potter WR, Sumlin A, Dougherty TJ and Pandey RK (2000b) Photosensitizers related to purpurin-18-N-alkylimides: A comparative in vivo tumoricidal ability of ester versus amide functionalities. Bioorg Med Chem Lett 10:123–127

    Article  CAS  Google Scholar 

  • Zheng G, Graham A, Shibata M, Missert JR, Oseroff AR, Dougherty TJ and Pandey RK (200la) Synthesis of β-ga-lactose-conjugated chlorins derived by enyne metathesis as galectin-specific photosensitizers for photodynamic therapy. J Org Chem 66:8709–8716

    Article  CAS  Google Scholar 

  • Zheng G, Potter WR, Camacho SH, Missert JR, Wang G, Bellnier DA, Henderson BW, Rodgers MAJ, Dougherty TJ and Pandey RK (2001b) Synthesis, photophysical properties, tumor uptake, and preliminary in vivo photosensitizing efficacy of a homologous series of 3-(1 '-alkyoxy)ethyl-3 '-devinylpurpurin-18-n-alkylimides with variable lipophilicity. J Med Chem 44:1540–1559

    Article  CAS  Google Scholar 

  • Zheng G, Li H, Zhang M, Lund-Katz S, Chance B and Glickson JD (2002) Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer. Bioconjugate Chem 13:392–396

    Article  CAS  Google Scholar 

  • Zilberstein J, Schreiber S, Bloemers MCWM, Bendel P, Neeman M, Schechtman E, Kohen F, Scherz A and Salomon Y (2001) Antivascular treatment of solid melanoma tumors with bacte-riochlorophyll-serine-based photodynamic therapy. Photochem Photobiol 73:257–266

    Article  PubMed  CAS  Google Scholar 

  • Zorin VP, Mikhalovsky IS and Zorina TE (1996) The distribution of chlorin-e 6 derivatives in biological systems. Investigation of pH-effects. Proc SPIE 2625:146–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Brandis, A.S., Salomon, Y., Scherz, A. (2006). Chlorophyll Sensitizers in Photodynamic Therapy. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_32

Download citation

Publish with us

Policies and ethics