Skip to main content

Electron Transfer in Photosynthetic Reaction Centers

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

The central importance of (bacterio)chlorophyll as a major photosynthetic pigment arises from its ability to both harvest the sunlight and perform ultrafast electron transfer (ET) reactions. The main function of the reaction center (RC) is to convert the photoexcitation in order to generate a trans-membrane potential in a series of ET steps. In bacterial RCs it is possible to relate molecular structure and biological function by exploring the early events after photoexcitation. In a series of ultrafast time resolved experiments with native and modi- fied samples, the details of the primary photosy nthetic reactions become visible, information on the relevant electron transfer parameters (free energy, reorganization energy and electronic coupling) can be deduced. This leads to a better understanding of architectural principles in photosynthetic RCs and optimization strategies in photosynthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R 26 — the cofactors. Proc Natl Acad Sci USA 84:5730–5734

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D, Mattioli TA, Fetsch A, Kuhn M and Lubitz W (1996) Effects of hydrogen bonding to abacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 35:6612–6619

    Article  PubMed  CAS  Google Scholar 

  • Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H and Zinth W (1993) The accessory bacteriochlorophyll: A real electron carrier in primary photosynthesis. Proc Natl Acad Sci USA 90:11757–11761

    Article  PubMed  CAS  Google Scholar 

  • Barter LMC, Durrant JR and Klug DR (2003) A quantitative structure-function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci USA 100:946–951

    Article  PubMed  CAS  Google Scholar 

  • Beddard GS (1998) Excitations and excitons in Photosystem I. Philos Trans Roy Soc Lond A 356:421–448

    Article  CAS  Google Scholar 

  • Beekman LM, Visschers RW, Monshouwer R, Heer-Dawson M, Mattioli TA, McGlynn P, Hunter CN, Robert B, van Stokkum IH and van Grondelle R (1995) Time-resolved and steady-state spectroscopic analysis of membrane-bound reaction centers from Rhodobacter sphaeroides: Comparisons with detergent-solubilized complexes. Biochemistry 34:14712–14721

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003)The crystal structure of plant Photosystem I. Nature 426:630–635

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWD and Barber J (2003) Structure of a Photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100:9050–9054

    Article  PubMed  CAS  Google Scholar 

  • Bixon M, Jortner J, Michel-Beyerle ME and Ogrodnik A (1989) A superexchange mechanism for the primary charge separation in photosynthetic reaction centers. Biochim Biophys Acta 977:273–286

    Article  CAS  Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerle ME (1991) On the mechanism of the primary charge separation in bacterial photosynthesis. Biochim Biophys Acta 1056:301–315

    Article  CAS  Google Scholar 

  • Breton J, Martin JL, Migus A, Antonetti A and Orszag A (1986) Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc Natl Acad Sci USA 83:5121–5125

    Article  PubMed  CAS  Google Scholar 

  • Breton J, Martin JL, Fleming GR and Lambry JC (1988) Lowtemperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria. Biochemistry 27:8276–8284

    Article  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in Photosystem I. Biochim Biophys Acta 1318:322–373

    Article  CAS  Google Scholar 

  • Brettel K and Leibl W (2001 ) Electron transfer in Photosystem I. Biochim Biophys Acta 1507:100–114

    Article  PubMed  CAS  Google Scholar 

  • Bylina EJ and Youvan DC (1988) Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci USA 85:7226–7230

    Article  PubMed  CAS  Google Scholar 

  • Byrdin M, Rimke I, Schlodder E, Stehlik D and Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in Photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: Are the kinetics of excited state decay traplimited or transfer-limited? Biophys J 79:992–1007

    PubMed  CAS  Google Scholar 

  • Chachisvilis M and Sundström V (1996) Femtosecond vibrational dynamics and relaxation in the core light-harvesting complex of photosynthetic purple bacteria. Chem Phys Lett 261:165–174

    Article  CAS  Google Scholar 

  • Chan CK, DiMagno TJ, Chen LX, Norris JR and Fleming GR (1991) Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc Natl Acad Sci USA 88:11202–11206

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, El-Kabbani D, Tiede D, Norris J and Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30:5352–5360

    Article  PubMed  CAS  Google Scholar 

  • Coleman WJ and Youvan DC (1990) Spectroscopic analysis of genetically modified photosynthetic reaction centers. Annu Rev Biophys Biophys Chem 19:333–367

    Article  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure-analysis of a membrane-protein complex — electron-density map at 3Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  PubMed  CAS  Google Scholar 

  • Diffey WM, Homoelle BJ, Edington MD and Beck WF (1998) Excited-state vibrational coherence and anisotropy decay in the bacteriochlorophyll a dimer protein B820. J Phys Chem B 102:2776–2786

    Article  CAS  Google Scholar 

  • Dressler K, Umlauf E, Schmidt S, Hamm P, Zinth W, Buchanan S and Michel H (1991) Detailed studies of the subpicosecond kinetics in the primary electron transfer of reaction centers of Rhodopseudomonas viridis. Chem Phys Lett 183:270–276

    Article  CAS  Google Scholar 

  • Du M, Rosenthal SJ, Xie X, Dimagno TJ, Schmidt M, Hanson DK, Schiffer M, Norris JR and Fleming GR (1992) Femtosecond spontaneous-emission studies of reaction centers from photosynthetic bacteria. Proc Natl Acad Sci USA 89:8517–8521

    Article  PubMed  CAS  Google Scholar 

  • Ermler U, Fritzsch G, Buchanan SK and Michel H (1994) Structure of the photosynthetic reaction-center from Rhodobacter sphaeroides at 2.65-Ångstrom resolution — cofactors and protein-cofactor interactions. Structure 2:925–936

    Article  PubMed  CAS  Google Scholar 

  • Fajer J, Brune DC, Davis MS, Forman A and Spaulding LD (1975) Primary charge separation in bacterial photosynthesis — oxidized chlorophylls and reduced pheophytin. Proc Natl Acad Sci USA 72:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Farchaus JW, Wachtveitl J, Mathis P and Oesterhelt D (1993) Tyrosine-162 of the photosynthetic reaction-center L-subunit plays a critical role in the cytochrome-c2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 1. Site-directed mutagenesis and initial characterization. Biochemistry 32:12875–12886

    Article  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Fleming GR, Martin JL and Breton J (1988) Rates of primary electron-transfer in photosynthetic reaction centers and their mechanistic implications. Nature 333:190–192

    Article  CAS  Google Scholar 

  • Franken EM, Shkuropatov AY, Francke C, Neerken S, Gast P, Shuvalov VA, Hoff AJ and Aartsma TJ (1997) Reaction centers of Rhodobacter sphaeroides R-26 with selective replacement of bacteriopheophytin a by pheophytin a. 2. Temperature dependence of the quantum yield of P+QA - and P3 formation. Biochim Biophys Acta 1321:1–9

    Article  CAS  Google Scholar 

  • Fujita I, Davis MS and Fajer J (1978) Anion radicals of pheophytin and chlorophyll a — their role in primary charge separations of plant photosynthesis. J Am Chem Soc 100:6280–6282

    Article  CAS  Google Scholar 

  • Geskes C, Meyer M, Fischer M, Scheer H and Heinze J (1995) Electrochemical investigation of modified photosynthetic pigments. J Phys Chem 99:17669–17672

    Article  CAS  Google Scholar 

  • Gray KA, Farchaus JW, Wachtveitl J, Breton J and Oesterhelt D (1990) Initial characterization of site-directed mutants of tyrosine M210 in the reaction centre of Rhodobacter sphaeroides. EMBO J 9:2061–2070

    PubMed  CAS  Google Scholar 

  • Hamm P, Gray KA, Oesterhelt D, Feick R, Scheer H and Zinth W (1993) Subpicosecond emission studies of bacterial reaction centers. Biochim Biophys Acta 1142:99–105

    Article  CAS  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1989) Observation of a bacteriochlorophyll anion radical during the primary charge separation in a reaction center. Chem Phys Lett 160:1–7

    Article  CAS  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1990) Initial electron transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87:5168–5172

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Meyer M, Nägele T, Hartl I, Scheer H, Zinth W and Wachtveitl J (1995) Primary photosynthesis in reaction centers containing 4 different types of electron accepters at site HA. Chem Phys 197:297–305

    Article  CAS  Google Scholar 

  • Huber H, Meyer M, Scheer H, Zinth W and Wachtveitl J (1998) Temperature dependence of the primary electron transfer reaction in pigment-modified bacterial reaction centers. Photosynth Res 55:153–162

    Article  CAS  Google Scholar 

  • Huppmann P, Arlt T, Penzkofer H, Schmidt S, Bibikova M, Dohse B, Oesterhelt D, Wachtveitl J and Zinth W (2002) Kinetics, energetics, and electronic coupling of the primary electron transfer reactions in mutated reaction centers of Blastochloris viridis. Biophys J 82:3186–3197

    Google Scholar 

  • Huppmann P, Spörlein S, Bibikova M, Oesterhelt D, Wachtveitl J and Zinth W (2003) Electron transfer in reaction centers of Blastochloris viridis: Photosynthetic reactions approximating the adiabatic regime. J Phys Chem A 107:8302–8309

    Article  CAS  Google Scholar 

  • Jackson JA, Lin S, Taguchi AKW, Williams JC, Allen JP and Woodbury NW (1997) Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing. J Phys Chem B 101:5747–5754

    Article  CAS  Google Scholar 

  • Jia YW, DiMagno TJ, Chan CK, Wang ZY, Du M, Hanson DK, Schiffer M, Norris JR, Fleming GR and Popov MS (1993) Primary charge separation in mutant reaction centers of Rhodobacter capsulatus. J Phys Chem 97:13180–13191

    Article  CAS  Google Scholar 

  • Joo TH, Jia YW, Yu JY, Jonas DM and Fleming GR (1996) Dynamics in isolated bacterial light harvesting antenna LH2 of Rhodobacter sphaeroides at room temperature. J Phys Chem 100:2399–2409

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Ångstrom resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985) Temperature and detection-wavelength dependence of the picosecond electron transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers resolution of new spectral and kinetic components in the primary charge-separation process. Biochim Biophys Acta 810:33–48

    Article  CAS  Google Scholar 

  • Knapp EW, Fischer SF, Zinth W, Sander M, Kaiser W, Deisenhofer J and Michel H (1985) Analysis of optical-spectra from single-crystals of Rhodopseudomonas viridis reaction centers. Proc Natl Acad Sci USA 82:8463–8467

    Article  PubMed  CAS  Google Scholar 

  • Kolbasov D and Scherz A (2000) Asymmetric electron transfer in reaction centers of purple bacteria strongly depends on different electron matrix elements in the active-and inactive branches. J Phys Chem B 104:1802–1809

    Article  CAS  Google Scholar 

  • Kuglstatter A, Hellwig P, Fritzsch G, Wachtveitl J, Oesterhelt D, Mäntele W and Michel H (1999) Identification of a hydrogen bond in the phe M197 → tyr mutant reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides by X-ray crystallography and FTIR spectroscopy. FEBS Lett 463:169–174

    Article  PubMed  CAS  Google Scholar 

  • Kumble R, Palese S, Visschers RW, Dutton PL and Hochstrasser RM (1996) Ultrafast dynamics within the B820 subunit from the core LH-1 antenna complex of Rs. rubrum. Chem Phys Lett 261:396–404

    Article  CAS  Google Scholar 

  • Lathrop EJP and Friesner RA (1994) Simulation of optical-spectra from the reaction-center of Rhodobacter sphaeroides — effects of an internal charge-separated state of the special pair. J Phys Chem 98:3056–3066

    Article  CAS  Google Scholar 

  • Lauterwasser C, Finkele U, Scheer H and Zinth W (1991) Temperature-dependence of the primary electron-transfer in photo synthetic reaction centers from Rhodobacter sphaeroides. Chem Phys Lett 183:471–477

    Article  CAS  Google Scholar 

  • Lin S, Jackson J, Taguchi AKW and Woodbury NW (1998) Excitation wavelength dependent spectral evolution in Rhodobacter sphaeroides R-26 reaction centers at low temperatures: The QY transition region. J Phys Chem B 102:4016–4022

    Article  CAS  Google Scholar 

  • Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP and Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91:10265–10269

    Article  PubMed  CAS  Google Scholar 

  • Marcus RA (1987) Superexchange versus an intermediate bchl-mechanism in reaction centers of photosynthetic bacteria. Chem Phys Lett 133:471–477

    Article  CAS  Google Scholar 

  • Marcus RA and Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  • Martin JL, Breton J, Hoff AJ, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26 direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 plus or minus 0.2 picoseconds. Proc Natl Acad Sci USA 83:957–961

    Article  PubMed  CAS  Google Scholar 

  • McMahon BH, Muller JD, Wraight CA and Nienhaus GU (1998) Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J 74:2567–2587

    Article  PubMed  CAS  Google Scholar 

  • Meyer M and Scheer H (1995) Reaction centers of Rhodobacter sphaeroides R-26 containing C-3 acetyl and vinyl (bacterio)pheophytins at sites HA, HB. Photosynth Res 44:55–65

    Article  CAS  Google Scholar 

  • Michel-Beyerle ME, Plato M, Deisenhofer J, Michel H, Bixon M and Jortner J (1988) Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 932:52–70

    Article  CAS  Google Scholar 

  • Mokhtari A, Chebira A and Chesnoy J (1990) Subpicosecond fluorescence dynamics of dye molecules. J Opt Soc Am B 7:1551–1557

    CAS  Google Scholar 

  • Monshouwer R, Abrahamsson M, van Mourik F and van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101:7241–7248

    Article  CAS  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS and Dutton PL (1992) Nature of biological electron-transfer. Nature 355:796–802

    Article  PubMed  CAS  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS and Dutton PL (1993) Electron-transfer mechanisms in reaction centers: Engineering guidelines. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, pp 1–22. Academic Press, San Diego

    Google Scholar 

  • Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AK, Woodbury NW and Williams JC (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: Phenylalanine to leucine at 1167 and histidine to phenylalanine at 1168. Biochemistry 32:3498–3505

    Article  PubMed  CAS  Google Scholar 

  • Ogrodnik A, Keupp W, Volk M, Aumeier G and Michel-Beyerle ME (1994) Inhomogeneity of radical pair energies in photosynthetic reaction centers revealed by differences in recombination dynamics of P+HA - when detected in delayed emission and in absorption. J Phys Chem 98:3432–3439

    Article  CAS  Google Scholar 

  • Parson WW and Warshel A (1993) Simulations of electron transfer in bacterial reaction centers. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, pp 23–48. Academic Press, San Diego

    Google Scholar 

  • Prokhorenko VI and Holzwarth AR (2000) Primary processes and structure of the Photosystem II reaction center: A photon echo study. J Phys Chem B 104:11563–11578

    Article  CAS  Google Scholar 

  • Rautter J, Lendzian F, Lubitz W, Wang S and Allen JP (1994) Comparative-study of reaction centers from photosynthetic purple bacteria — electron-paramagnetic-resonance and electron-nuclear double-resonance spectroscopy. Biochemistry 33:12077–12084

    Article  PubMed  CAS  Google Scholar 

  • Remy A and Gerwert K (2003) Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Biol 10:637–644

    Article  PubMed  CAS  Google Scholar 

  • Rosker MJ, Wise FW and Tang CL (1986) Femtosecond relaxation dynamics of large molecules. Phys Rev Lett 57:321–324

    Article  PubMed  CAS  Google Scholar 

  • Savikhin S, Xu W, Chitnis PR and Strove WS (2000) Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: Roles of p700 and a(o). Biophys J 79:1573–1586

    PubMed  CAS  Google Scholar 

  • Schenkl S, Spörlein S, Müh F, Witt H, Lubitz W, Zinth W and Wachtveitl J (2002) Selective perturbation of the second electron transfer step in mutant bacterial reaction centers. Biochim Biophys Acta 1554:36–47

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Nägele T, Wachtveitl J, Meyer M, Scheer H and Zinth W (1994) Energetics of the primary electron-transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers. Chem Phys Lett 223:116–120

    Article  CAS  Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Nägele T, Wachtveitl J, Zinth W, Meyer M and Scheer H (1995) Primary electron-transfer dynamics in modified bacterial reaction centers containing pheophytin-a instead of bacteriopheophytin-a. Spectrochim Acta A 51:1565–1578

    Article  Google Scholar 

  • Shkuropatov AY and Shuvalov VA (1993) Electron-transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26). FEBS Lett 322:168–172

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA and Yakovlev AG (2003) Coupling of nuclear wavepacket motion and charge separation in bacterial reaction centers. FEBS Lett 540:26–34

    Article  PubMed  CAS  Google Scholar 

  • Spörlein S, Zinth W and Wachtveitl J (1998) Vibrational coherence in photosynthetic reaction centers observed in the bacteriochlorophyll anion band. J Phys Chem B 102:7492–7496

    Article  Google Scholar 

  • Spörlein S, Zinth W, Meyer M, Scheer H and Wachtveitl J (2000) Primary electron transfer in modified bacterial reaction centers: Optimization of the first events in photosynthesis. Chem Phys Lett 322:454–464

    Article  Google Scholar 

  • Stanley RJ and Boxer SG (1995) Oscillations in the spontaneous fluorescence from photosynthetic reaction centers. J Phys Chem 99:859–863

    Article  CAS  Google Scholar 

  • Stanley RJ, King B and Boxer SG (1996) Excited state energy transfer pathways in photosynthetic reaction centers. 1. Structural symmetry effects. J Phys Chem 100:12052–12059

    Article  CAS  Google Scholar 

  • Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E and Feher G (1997) Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 276:812–816

    Article  PubMed  CAS  Google Scholar 

  • Streltsov AM, Aartsma TJ, Hoff AJ and Shuvalov VA (1997) Oscillations within the BL absorption-band of Rhodobacter sphaeroides reaction centers upon 30 femtosecond excitation at 865 nm. Chem Phys Lett 266:347–352

    Article  CAS  Google Scholar 

  • Struck A and Scheer H (1990) Modified reaction centers from Rhodobacter sphaeroides R26 — exchange of monomeric bacteriochlorophyll with 13(2)-hydroxy- bacteriochlorophyll. FEBS Lett 261:385–388

    Article  CAS  Google Scholar 

  • Struck A, Cmiel E, Katheder I and Scheer H (1990) Modified reaction centers from Rhodobacter sphaeroides R26.2. Bacteriochlorophylls with modified c-3 substituents at sites BA and BB. FEBS Lett 268:180–184

    Article  PubMed  CAS  Google Scholar 

  • Trissl HW, Breton J, Deprez J, Dobek A and Leibl W (1990) Trapping kinetics, annihilation, and quantum yield in the photosynthetic purple bacterium Rps. viridis as revealed by electric measurement of the primary charge separation. Biochim Biophys Acta 1015:322–333

    Article  CAS  Google Scholar 

  • van Brederode ME, Jones MR and van Grondelle R (1997a) Fluorescence excitation spectra of membrane-bound photosynthetic reaction centers of Rhodobacter sphaeroides in which the tyrosine M210 residue is replaced by tryptophan: Evidence for a new pathway of charge separation. Chem Phys Lett 268:143–149

    Article  Google Scholar 

  • van Brederode ME, Jones MR, van Mourik F, van Stokkum IHM and van Grondelle R (1997b) A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry 36:6855–6861

    Article  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy-transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65

    Article  CAS  Google Scholar 

  • Vasil'ev S, Orth P, Zouni A, Owens TG and Bruce D (2001) Excited-state dynamics in Photosystem II: Insights from the X-ray crystal structure. Proc Natl Acad Sci USA 98:8602–8607

    Article  PubMed  Google Scholar 

  • Vos MH and Martin JL (1999) Femtosecond processes in proteins. Biochim Biophys Acta 1411:1–20

    Article  PubMed  CAS  Google Scholar 

  • Vos MH, Lambry JC, Robles SJ, Youvan DC, Breton J and Martin JL (1991) Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy. Proc Natl Acad Sci USA 88:8885–8889

    Article  PubMed  CAS  Google Scholar 

  • Vos MH, Rappaport F, Lambry JC, Breton J and Martin JL (1993) Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363:320–325

    Article  CAS  Google Scholar 

  • Vos MH, Jones MR, Hunter CN, Breton J, Lambry JC and Martin JL (1994) Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry 33:6750–6757

    Article  PubMed  CAS  Google Scholar 

  • Vos MH, Breton J and Martin JL (1997) Electronic energy transfer within the hexamer cofactor system of bacterial reaction centers. J Phys Chem B 101:9820–9832

    Article  CAS  Google Scholar 

  • Wachtveitl J, Farchaus JW, Das R, Lutz M, Robert B and Mattioli TA (1993) Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry 32:12875–12886

    Article  PubMed  CAS  Google Scholar 

  • Wachtveitl J, Huber H, Feick R, Rautter J, Müh F and Lubitz W (1998) Electron transfer in bacterial reaction centers with an energetically raised primary acceptor: Ultrafast spectroscopy and ENDOR/TRIPLE studies. Spectrochim Acta 54:153–162

    Google Scholar 

  • Wang Q, Schoenlein RW, Peteanu LA, Mathies RA and Shank C V (1994) Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266:422–424

    Article  PubMed  CAS  Google Scholar 

  • Warshel A (1980) Role of the chlorophyll dimer in bacterial photosynthesis. Proc Natl Acad Sci USA 77:3105–3109

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW and Allen JP (1992) Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31:11029–11037

    Article  PubMed  CAS  Google Scholar 

  • Woodbury NW, Becker M, Middendorf D and Parson WW (1985) Picosecond kinetics of the initial photochemical electrontransfer reaction in bacterial photosynthetic reaction centers. Biochemistry 24:7516–7521

    Article  PubMed  CAS  Google Scholar 

  • Woodbury NW, Peloquin JM, Alden RG, Lin X, Lin S, Taguchi AK, Williams JC and Allen JP (1994) Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry 33:8101–8112

    Article  PubMed  CAS  Google Scholar 

  • Xu D and Schulten K (1994) Coupling of protein motion to electron-transfer in a photosynthetic reaction-center — investigating the low-temperature behavior in the framework of the spin-boson model. Chem Phys 182:91–117

    Article  CAS  Google Scholar 

  • Zhang LY and Friesner RA (1998) Ab initia calculation of electronic coupling in the photosynthetic reaction center. Proc Natl Acad Sci USA 95:13603–13605

    Article  PubMed  CAS  Google Scholar 

  • Zinth W, Kaiser W and Michel H (1983) Efficient photochemical activity and strong dichroism of single-crystals of reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta 723:128–131

    Article  CAS  Google Scholar 

  • Zinth W, Huppmann P, Arlt T and Wachtveitl J (1998) Ultrafast spectroscopy of the electron transfer in photosynthetic reaction centres: Towards a better understanding of electron transfer in biological systems. Philos Trans Roy Soc Lond A 356:465–476

    Article  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Ångstrom resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Wachtveitl, J., Zinth, W. (2006). Electron Transfer in Photosynthetic Reaction Centers. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_31

Download citation

Publish with us

Policies and ethics