Skip to main content

Assembly of Model Bacteriochlorophyll Proteins in the Native Lipid Environment

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

Protein design is used as an approach to further the understanding of membrane protein assembly, in particular, the assembly of transmembrane (bacterio)chlorophyll-binding pockets. Pigment-protein interaction motifs have been explored by (i) use of model proteins in which the native amino acid sequence in the pigment binding pockets are substantially altered and (ii) theoretical analyses of binding pockets of natural photosynthetic proteins. The bacteriochlorophyll binding sites of light harvesting complex 2, LH2, are replaced by model sites and expressed in vivo by the use of a modified Rhodobacter sphaeroides strain. The artificial helices are shown to bind bacteriochlorophyll and support the assembly of light-harvesting active complexes in the native membrane. A H-bond, which has been introduced at the membrane embedded bacteriochlorophyll/helix model site, is shown to drive the assembly of the model LH2 complex. Statistical analyses of natural (bacterio)chlorophyll binding pockets reveal the presence of distinct interaction motifs at the pigment/helix interface. One example is intra-membrane H-bonding between the pigments and the surrounding polypeptides, particularly between the chlorophylls’ C131 keto carbonyl groups and the residues of the binding helices. With this system at hand, specific interaction motifs, such as the H-bonding motif, and their contribution to the folding and assembly can now be directly addressed within a highly simplified sequence context and in the polypeptides’ native membrane environement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arkin IT, Brunger AT and Engelman DM (1997) Are there dominant membrane protein families with a given number of helices? Proteins 28: 465–466

    Article  PubMed  CAS  Google Scholar 

  • Bandilla M, Ucker B, Ram M, Simonin I I, Gelhaye E, McDermott G, Cogdell RJ and Scheer H (1998) Reconstitution of the B800 bacteriochlorophylls in the peripheral light harvesting complex B800–850 of Rhodobacter sphaeroides 2.4.1 with BChl a and modified (bacterio-)chlorophylls. Biochim Biophys Acta 1364: 390–402

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandona D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  PubMed  CAS  Google Scholar 

  • Braun P and Scherz A (1991) Polypeptides and bacteriochlorophyll organization in the light—harvesting complex B850 of Rhodobacter sphaeroides R-26.1. Biochemistry 30: 5177–5184

    Article  PubMed  CAS  Google Scholar 

  • Braun P, Greenberg BM and Scherz A (1990) D1-D2-cytochrome b559 complex from the aquatic plant Spirodela oligorrhiza: Correlation between complex integrity, spectroscopic properties, photochemical activity, and pigment composition. Biochemistry 29: 10376–10387

    Article  PubMed  CAS  Google Scholar 

  • Braun P, Olsen J, Strohmann B, Hunter CN and Scheer H (2002) Assembly of light—harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment. J Mol Biol 318: 1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Braun P, Vegh A, Strohmann B, Hunter N, Robert B and Scheer H (2003) Hydrogen bonding between the C131 keto group of bacteriochlorophyll and intramembrane serine residue α27 stabilizes LH2 antenna complex. Biochim Biophys Acta 1607: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Choma C, Gratkowski H, Lear JD and DeGrado WF (2000) Asparagine— mediated self-association of a model transmembrane helix. Nat Struct Biol 7: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Cogdell RJ and Scheer H (1985) Circular dichroism of light harvesting complexes from purple photosynthetic bacteria. Photochem Photobiol 42: 669–678

    CAS  Google Scholar 

  • Davis CM, Bustamante PL and Loach PA (1995) Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated alpha-and beta-polypeptides, bacteriochlorophyll alpha, and carotenoid. J Biol Chem 270: 5793–804

    Article  PubMed  CAS  Google Scholar 

  • Davis CM, Bustamante PL, Todd JB, Parkes—Loach PS, McGlynn P, Olsen JD, McMaster L, Hunter CN and Loach PA (1997) Evaluation of structure-function relationships in the core light- harvesting complex of photosynthetic bacteria by reconstitution with mutant polypeptides. Biochemistry 36: 3671–3679

    Article  PubMed  CAS  Google Scholar 

  • Drews G (1996) Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria. Arch Microbiol 166: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Fowler GJ, Visschers RW, Grief GG, van Grondelle R and Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355: 848–850

    Article  PubMed  CAS  Google Scholar 

  • Fowler GJ, Sockalingum GD, Robert B and Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at alpha-Tyr-44 and alpha-Tyr-45. Biochem J 299 : 695–700

    PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P and Krauss N (2001) Structure of Photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Gall A, Fowler GJ, Hunter CN and Robert B (1997) Influence of the protein binding site on the absorption properties of the monomeric bacteriochlorophyll in Rhodobacter sphaeroides LH2 complex. Biochemistry 36: 16282–16287

    Article  PubMed  CAS  Google Scholar 

  • Garcia—Martin A, Kwa LG, von Jan M, Vegh A, Robert B, Scheer H and Braun P (2005) H—bonding drives assembly of model bacteriochlorophyll protein in the native membrane. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, pp 138–140. Allen Press, Montréal

    Google Scholar 

  • Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R and van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82: 2184–2197

    Article  PubMed  CAS  Google Scholar 

  • Gibney BR, Rabanal F and Dutton PL (1997) Synthesis of novel proteins. Curr Opin Chem Biol 1: 537–542

    Article  PubMed  CAS  Google Scholar 

  • Gratkowski H, Lear JD and DeGrado WF (2001) Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci USA 98: 880–885

    Article  PubMed  CAS  Google Scholar 

  • Gust D, Moore TA and Moore AL (1993) Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res 26: 198–205

    Article  CAS  Google Scholar 

  • Heinemann B, Paulsen H (1999) Random mutations directed to transmembrane and loop domains of the light-harvesting chlorophyll a/b protein: Impact on pigment binding. Biochemistry 38: 14088–14093

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Paulsen H (2002) Folding in vitro of light—harvesting chlorophyll a/b protein is coupled with pigment binding. J Mol Biol 318: 547–556

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sturgis JN, Robert B, Delagrave S, Youvan DC and Niederman RA (1998) Hydrogen bonding and circular dichroism of bacteriochlorophylls in the Rhodobacter capsulatus light harvesting 2 complex altered by combinatorial mutagenesis. Biochemistry 37: 10006–10015

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, and Lai L (2002) CH.O hydrogen bonds at protein protein interfaces. J Biol Chem 277: 37732–37740

    Article  PubMed  CAS  Google Scholar 

  • Jones MR, Fowler GJ, Gibson LC, Grief GG, Olsen JD, Crielaard W and Hunter CN (1992) Mutants of Rhodobacter sphaeroides lacking one or more pigment—protein complexes and complementation with reaction-centre, LH1, and LH2 genes. Mol Microbiol 6: 1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Kashiwada A, Nishino N, Wang Z-H, Nozawa T, Kobayashi M and Nango M (1999) Molecular Assembly of Bacteriochlorophyll a and its Analogues by Synthetic 4α-Helix Polypeptides. Chem Lett 1301–1302

    Google Scholar 

  • Kehoe JW, Meadows KA, Parkes-Loach PS and Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37: 3418–3428

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Eichacker LA, Rüdiger W and Mullet JE (1994) Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol 104: 907–916

    Article  PubMed  CAS  Google Scholar 

  • Koolhaus MH, Frese RN, Fowler GJ, Bibby TS, Georgakopoulou S, van der Zwan G, Hunter CN and van Grondelle R (1998) Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800—free mutant of Rhodobacter sphaeroides. Biochemistry 37: 4693–4698

    Article  PubMed  CAS  Google Scholar 

  • Lapouge K, Naveke A, Robert B, Scheer H and Sturgis JN (2000) Exchanging cofactors in the core antennae from purple bacteria: Structure and properties of Zn-bacteriopheophytin-containing LH1. Biochemistry 39: 1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Lear JD, Gratkowski H and Degrado WF (2001) De novo design, synthesis and characterization of membrane-active peptides. Biochem Soc Trans 29: 559–564

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Nitschke Wa, and Mattioli TA. (1996) Pigment—protein interactions in the antenna-reaction center complex of Heliobacillus mobilis. Photochem Photobiol 64: 38–45.

    CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • McGlynn P, Westerhuis WH, Jones MR and Hunter CN (1996) Consequences for the organization of reaction center—light harvesting antenna 1 (LH1) core complexes of Rhodobacter sphaeroides arising from deletion of amino acid residues from the C terminus of the LH1 alpha polypeptide. J Biol Chem 271: 3285–3292

    Article  PubMed  CAS  Google Scholar 

  • Meadows KA, Parkes-Loach PS, Kehoe JW and Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation. Biochemistry 37: 3411–3417

    Article  PubMed  CAS  Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Olsen JD, Sturgis JN, Westerhuis WH, Fowler GJ, Hunter CN and Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry 36: 12625–12632

    Article  PubMed  CAS  Google Scholar 

  • Plumley GF, and Schmidt GW (1995) Light-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly. Plant Cell 7: 689–704

    Article  PubMed  CAS  Google Scholar 

  • Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite— Lawless AM, Cogdell RJ and Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: Modular assembly and protein pigment interactions. J Mol Biol 268: 412–423

    Article  PubMed  CAS  Google Scholar 

  • Rau HK, Snigula H, Struck A, Robert B, Scheer H and Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268: 3284–3295

    Article  PubMed  CAS  Google Scholar 

  • Remelli R, Varotto C, Sandona D, Croce R and Bassi R (1999) Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem 274: 33510–21

    Article  PubMed  CAS  Google Scholar 

  • Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE, Pidikiti R, Lear JD, Wand AJ, DeGrado WF and Dutton PL (1994) Design and synthesis of multi-haem proteins. Nature 368: 425–432

    Article  PubMed  CAS  Google Scholar 

  • Scheer H and Hartwig G (1995) Bacterial reaction centers with modified tetrapyrrole chromophors. In: Blankenship R, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 649–663. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schmid VH, Potthast S, Wiener M, Bergauer V, Paulsen H and Storf S (2002) Pigment binding of Photosystem I light—harvesting proteins. J Biol Chem 277: 37307–37314

    Article  PubMed  CAS  Google Scholar 

  • Senes A, Gerstein M and Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296: 921–936

    Article  PubMed  CAS  Google Scholar 

  • Snigula H, Monien B, Drepper F, de Jonge N, Haehnel W and Scheer H (2001) Non-covalent binding of a transmetalated Ni—bacteriochlorophyllide a to a four-helix bundle proteins obtained by orthogonal combinatorial synthesis. In: PS2001 Proceedings: 12th International Congress on Photosynthesis. CSIRO Publishing, Melbourne, S38-014. (CD-ROM)

    Google Scholar 

  • Steiner R and Scheer H (1985) Characterization of a B800/1020 antenna from the photosynthetic bacteria Ectothiorhodospira halochloris and Ectothiorhodospira abdelmalekii. Biochim Biophys Acta 807: 278–284

    Article  CAS  Google Scholar 

  • Sturgis JN and Robert B. (1997) Pigment binding site and electronic properties in light—harvesting proteins of purple bacteria. J Phys Chem 101: 7227–7231

    CAS  Google Scholar 

  • Todd JB, Parkes—Loach PS, Leykam JF and Loach PA (1998) In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Biochemistry 37: 17458–17468

    Article  PubMed  CAS  Google Scholar 

  • Todd JB, Recchia PA, Parkes-Loach PS, Olsen JO, Fowler GJS, McGlynn P, Hunter CN, and Loach PA (1999) Minimal requirements for in vitro reconstitution of the structural subunit of light harvesting complexes of photosynthetic bacteria. Photosynth Res 62: 85–98

    Article  CAS  Google Scholar 

  • van Grondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim. Biophys. Acta 811: 147–195

    Google Scholar 

  • Wallin E and von Heijne G (1998) Genome—wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7: 1029–1038

    Article  PubMed  CAS  Google Scholar 

  • Zhou FX, Cocco MJ, Russ WP, Brunger AT and Engelman DM (2000) Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol 7: 154–160

    Article  PubMed  CAS  Google Scholar 

  • Zhou FX, Merianos HJ, Brunger AT and Engelman DM (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci USA 98: 2250–2255

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Garcia-Martin, A., Kwa, L.G., Jan, M.v., Neil Hunter, C., Braun, P. (2006). Assembly of Model Bacteriochlorophyll Proteins in the Native Lipid Environment. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_27

Download citation

Publish with us

Policies and ethics