Skip to main content

Bacteriochlorophyll Protein Maquettes

  • Chapter
Chlorophylls and Bacteriochlorophylls

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 25))

Abstract

The photosystems of plants and photosynthetic bacteria are robust, adaptable and highly efficient light-harvesting/charge-separating systems that use chlorophylls (Chls) or bacteriochlorophylls (BChls) as photoreceptors. These solar energy collectors are built for increased light absorbance by providing environmental control over large pigment arrays with as little protein mass as possible. We wish to resolve the features of protein architecture necessary for effective light harvesting and electron transfer per se from other features of the natural protein some of which may be simply historical accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden RG, Johnson E, Nagarajan V, Parson WW, Law CJ and Cogdell RG (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll—Protein antenna complex from Rhodopseudomonas acidophila. J Phys Chem B 101: 4667–4680

    Article  CAS  Google Scholar 

  • Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA and Gust D (2001) Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad. J Am Chem Soc 123: 7124–7133

    Article  PubMed  CAS  Google Scholar 

  • Bailey MJ, Schulten K and Johnson JE (1998) The use of solid physical models for the study of macromolecular assembly. Curr Opin Struct Biol 8: 202–208

    Article  PubMed  CAS  Google Scholar 

  • Baltzer L, Nilsson H and Nilsson J (2001) De novo design of proteins—What are the rules? Chem Rev 101: 3153–3163

    Article  PubMed  CAS  Google Scholar 

  • Bechinger B (2000) Understanding peptide interactions with the lipid bilayer: A guide to membrane protein engineering. Curr Opin Chem Biol 4: 639–644

    Article  PubMed  CAS  Google Scholar 

  • Beekman LMP, Steffen M, van Stokkum IHM, Olsen JD, Hunter CN, Boxer SG and van Grondelle R (1997) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by stark spectroscopy. 1. LH1 antenna complex and the B820 subunit from Rhodospirillum rubrum. J Phys Chem B 101: 7284–7292

    Article  CAS  Google Scholar 

  • Benites MD, Johnson TE, Weghorn S, Yu LH, Rao PD, Diers JR, Yang SI, Kirmaier C, Bocian DF, Holten D and Lindsey JS (2002) Synthesis and properties of weakly coupled dendrimeric multiporphyrin light-harvesting arrays and hole-storage reservoirs. J Mater Chem 12: 65–80

    Article  CAS  Google Scholar 

  • Bolon DN and Mayo SL (2001) Enzyme-like proteins by computational design. Proc Natl Acad Sci USA 98: 14274–14279

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU (2000) Understanding membrane protein structure by design. Nat Struct Biol 7: 91–94

    Article  PubMed  CAS  Google Scholar 

  • Braun P, Olsen JD, Strohmann B, Hunter CN and Scheer H (2002) Assembly of light-harvesting bacteriochlorophyll in a model transmembrane helix in its natural environment. J Mol Biol 318: 1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Bryson JW, Desjarlais JR, Handel TM and DeGrado WF (1998) From coiled coils to small globular proteins: Design of a native-like three-helix bundle. Protein Sci 7: 1404–1414

    PubMed  CAS  Google Scholar 

  • Chen XX, Moser CC, Pilloud DL and Dutton PL (1998) Molecular orientation of Langmuir-Blodgett films of designed heme protein and lipoprotein maquettes. J Phys Chem B 102: 6425–6432

    Article  CAS  Google Scholar 

  • Choma CT, Tieleman DP, Cregut D, Serrano L and Berendsen HJC (2001) Towards the design and computational characterization of a membrane protein. J Mol Graphics Modell, 20: 219–234

    Article  CAS  Google Scholar 

  • Cogdell RJ and Lindsay JG (2000) Tansley Review No. 109—The structure of photosynthetic complexes in bacteria and plants: an illustration of the importance of protein structure to the future development of plant science. New Phytol 145: 167–196

    Article  CAS  Google Scholar 

  • Cogdell RJ, Isaacs NW, Howard TD, McLuskey K, Fraser NJ and Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol, 181: 3869–3879

    PubMed  CAS  Google Scholar 

  • Dahiyat BI and Mayo SL (1997) De novo protein design: Fully automated sequence selection. Science 278: 82–87

    Article  PubMed  CAS  Google Scholar 

  • Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H and Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    Article  PubMed  CAS  Google Scholar 

  • DeGrado WF, Summa CM, Pavone V, Nastri F and Lombardi A (1999) De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem, 68: 779–819

    Article  Google Scholar 

  • Dutton PL (1995) Design and synthesis of redox proteins. Protein Eng 8: 83–83

    Google Scholar 

  • Fiedor L, Leupold D, Teuchner K, Voigt B, Hunter CN, Scherz A and Scheer H (2001) Excitation trap approach to analyze size and pigment-pigment coupling: Reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll. Biochemistry 40: 3737–3747

    Article  PubMed  CAS  Google Scholar 

  • Field MJ (2002) Simulating enzyme reactions: Challenges and perspectives. J Comput Chem 23: 48–58

    Article  PubMed  CAS  Google Scholar 

  • Fisher JRE, Rosenbach-Belkin V and Scherz A (1990) Cooperative polymerization of photosynthetic pigments in formamide-water solution. Biophys J 58: 461–470

    Article  CAS  Google Scholar 

  • Fowler GJS, Sockalingum GD, Robert B and Hunter CN (1994) Blue shifts in bacteriochlorophyll absorbency correlate with changed hydrogen-bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at Alpha-Tyr-44 and Alpha-Tyr-45. Biochem J 299: 695–700

    PubMed  CAS  Google Scholar 

  • Fowler GJS, Hess S, Pullerits T, Sundström V and Hunter CN (1997) The role of beta Arg(–10) in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Biochemistry 36: 11282–11291

    Article  PubMed  CAS  Google Scholar 

  • Gall A, Fowler GJS, Hunter CN and Robert B (1997) Influence of the protein binding site on the absorption properties of the monomeric bacteriochlorophyll in Rhodobacter sphaeroides LH2 complex. Biochemistry 36: 16282–16287

    Article  PubMed  CAS  Google Scholar 

  • Gibney BR, Mulholland SE, Rabanal F and Dutton PL (1996) Ferredoxin and ferredoxin-heme maquettes. Proc Natl Acad Sci USA 93: 15041–15046

    Article  PubMed  CAS  Google Scholar 

  • Gibney BR, Rabanal F and Dutton PL (1997a) Synthesis of novel proteins. Curr Opin Chem Biol 1: 537–542

    Article  CAS  Google Scholar 

  • Gibney BR, Rabanal F, Skalicky JJ, Wand AJ and Dutton PL (1997b) Design of a unique protein scaffold for maquettes. J Am Chem Soc 119: 2323–2324

    Article  CAS  Google Scholar 

  • Gibney BR, Johansson JS, Rabanal F, Skalicky JJ, Wand AJ and Dutton PL (1997c) Global topology and stability and local structure and dynamics in a synthetic spin-labeled four-helix bundle protein. Biochemistry 36: 2798–2806

    Article  CAS  Google Scholar 

  • Gibney BR, Rabanal F, Reddy KS and Dutton PL (1998) Effect of four helix bundle topology on heme binding and redox properties. Biochemistry 37: 4635–4643

    Article  PubMed  CAS  Google Scholar 

  • Gibney BR, Huang SS, Skalicky JJ, Wand AJ and Dutton PL (1999a) Controlling synthetic heme protein redox potentials. J Inorg Biochem 74: 142–142

    Google Scholar 

  • Gibney BR, Rabanal F, Skalicky JJ, Wand AJ and Dutton PL (1999b) Iterative protein redesign. J Am Chem Soc 121: 4952–4960

    Article  CAS  Google Scholar 

  • Gibney BR, Huang SS, Skalicky JJ, Fuentes EJ, Wand AJ and Dutton PL (2001) Hydrophobic modulation of heme properties in heme protein maquettes. Biochemistry 40: 10550–10561

    Article  PubMed  CAS  Google Scholar 

  • Gratkowski H, Lear JD and DeGrado WF (2001) Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci USA 98: 880–885

    Article  PubMed  CAS  Google Scholar 

  • Gust D, Moore TA and Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34: 40–48

    Article  PubMed  CAS  Google Scholar 

  • Hill RB, Raleigh DP, Lombardi A and Degrado NF (2000) De novo design of helical bundles as models for understanding protein folding and function. Acc Chem Res 33: 745–754

    Article  PubMed  CAS  Google Scholar 

  • Holten D, Bocian DF and Lindsey JS (2002) Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc Chem Res 35: 57–69

    Article  PubMed  CAS  Google Scholar 

  • Hu QH, Sturgis JN, Robert B, Delagrave S, Youvan DC and Niederman RA (1998a) Hydrogen bonding and circular dichroism of bacteriochlorophylls in the Rhodobacter capsulatus light-harvesting 2 complex altered by combinatorial mutagenesis. Biochemistry 37: 10006–10015

    Article  CAS  Google Scholar 

  • Hu XC, Damjanovic A, Ritz T and Schulten K (1998b) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95: 5935–5941

    Article  CAS  Google Scholar 

  • Huang S (2001) Structure of a Molecular Maquette Scaffold. Ph.D. thesis, University of Pennsylvania, Philadelphia

    Google Scholar 

  • Humphrey W. Dalke A. and Schulten K. (1996) VMD—Visual molecular dynamics. J Molec Graphics. 14: 33–38

    Article  CAS  Google Scholar 

  • Hunter CN (1995) Genetic manipulation of the antenna complexes of purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds), Anoxygenic Photosynthetic Bacteria, pp 473–501. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ikeda-Yamasaki I, Odahara T, Mitsuoka K, Fujiyoshi Y and Murata K (1998) Projection map of the reaction center-light harvesting 1 complex from Rhodopseudomonas viridis at 10 Ã…ngstrom resolution. FEBS Lett 425: 505–508

    Article  PubMed  CAS  Google Scholar 

  • Johansson JS, Gibney BR, Skalicky JJ, Wand AJ and Dutton PL (1998) A native-like three-alpha-helix bundle protein from structure-based redesign: A novel maquette scaffold. J Am Chem Soc 120: 3881–3886

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5A resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Jungas C, Ranck JL, Rigaud JL, Joliot P and Vermeglio A (1999) Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides. EMBO J 18: 534–542

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeck WA, Robertson DE, Pandey RK, Smith KM, Dutton PL and Bocian DF (1996) Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome. Biochemistry 35: 3429–3438

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5-Ã…ngstrom projection map of the light-harvesting complex-I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    PubMed  CAS  Google Scholar 

  • Kehoe JW, Meadows KA, Parkes-Loach PS and Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37: 3418–3428

    Article  PubMed  CAS  Google Scholar 

  • Kodis G, Liddell PA, de la Garza L, Clausen PC, Lindsey JS, Moore AL, Moore TA and Gust D (2002) Efficient energy transfer and electron transfer in an artificial photosynthetic antenna-reaction center complex. J Phys Chem A 106: 2036–2048

    Article  CAS  Google Scholar 

  • Koepke J, Hu XC, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800- 850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T, Ramirez-Alvarado M and Serrano L (1998) Design of a 20-amino acid, three-stranded beta-sheet protein. Science 281: 253–256

    Article  PubMed  CAS  Google Scholar 

  • Kraemer-Pecore CM, Wollacott AM and Desjarlais JR (2001) Computational protein design. Curr Opin Chem Biol 5: 690–695

    Article  PubMed  CAS  Google Scholar 

  • Lear JD, Schneider JP, Kienker PK and DeGrado WF (1997) Electrostatic effects on ion selectivity and rectification in designed ion channel peptides. J Am Chem Soc 119: 3212–3217

    Article  CAS  Google Scholar 

  • Loach PA and Parkes-Loach PS (1995) Structure-function relationships in core light-harvesting complexes (LHI) as determined by characterization of the structural subunit and by reconstitution experiments. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 437–471. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Markvart T (2000) Light harvesting for quantum solar energy conversion. Prog Quantum Electron 24: 107–186

    Article  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (2001) The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila strain 7050. Biochemistry 40: 8783–8789

    Article  PubMed  CAS  Google Scholar 

  • Meadows KA, Iida K, Tsuda K, Recchia PA, Heller BA, Antonio B, Nango M and Loach PA (1995) Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria—determination of the minimal polypeptide size and structure required for subunit and light-harvesting complexformation. Biochemistry 34: 1559–1574

    Article  PubMed  CAS  Google Scholar 

  • Meadows KA, Parkes-Loach PS, Kehoe JW and Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation. Biochemistry 37: 3411–3417

    Article  PubMed  CAS  Google Scholar 

  • Mongin O, Hoyler N and Gossauer A (2000) Synthesis and light-harvesting properties of niphaphyrins. Eur J Org Chem 7: 1193–1197

    Article  Google Scholar 

  • Oling F, Boekema EJ, deZarate IO, Visschers R, van Grondelle R, Keegstra W, Brisson A and Picorel R (1996) Two-dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy. Biochim Biophys Acta Bioenergetics 1273: 44–50

    Article  Google Scholar 

  • Olsen JD, Sturgis JN, Westerhuis WHJ, Fowler GJS, Hunter CN and Robert B (1997) Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides. Biochemistry 36: 12625–12632

    Article  PubMed  CAS  Google Scholar 

  • Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67: 61–75

    Article  CAS  Google Scholar 

  • Pilloud DL, Rabanal F, Gibney BR, Farid RS, Dutton PL and Moser CC (1998) Self-assembled monolayers of synthetic hemoproteins on silanized quartz. J Phys Chem B 102: 1926–1937

    Article  CAS  Google Scholar 

  • Pokala N and Handel TM (2001) Review: Protein design—Where we were, where we are, where we're going. J Struct Biol 134: 269–281

    Article  PubMed  CAS  Google Scholar 

  • Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite- Lawless AM, Cogdell RJ and Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: Modular assembly and protein pigment interactions. J Mol Biol 268: 412–423

    Article  PubMed  CAS  Google Scholar 

  • Ranck JL, Ruiz T, Pehau-Arnaudet G, Arnoux B and Reiss- Husson F (2001) Two-dimensional structure of the native light-harvesting complex LH2 from Rubrivivax gelatinosus and of a truncated form. Biochim Biophys Acta Bioenergetics 1506: 67–78

    Article  CAS  Google Scholar 

  • Rau HK, Snigula H, Struck A, Scheer H and Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268: 3284–3295

    Article  PubMed  CAS  Google Scholar 

  • Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE, Pidikiti R, Lear JD, Wand AJ, DeGrado WF and Dutton PL (1994) Design and synthesis of multi-haem proteins. Nature 368: 425–432

    Article  PubMed  CAS  Google Scholar 

  • Rucareanu S, Mongin O, Schuwey A, Hoyler N, Gossauer A, Amrein W and Hediger HU (2001) Supramolecular assemblies between macrocyclic porphyrin hexamers and star-shaped porphyrin arrays. J Org Chem 66: 4973–4988

    Article  PubMed  CAS  Google Scholar 

  • Savage H, Cyrklaff M, Montoya G, Kühlbrandt W and Sinning I (1996) Two-dimensional structure of light harvesting complex II (LHII) from the purple bacterium Rhodovulum sulfidophilum and comparison with LHII from Rhodopseudomonas acidophila. Structure 4: 243–252

    Article  PubMed  CAS  Google Scholar 

  • Scherz A, Rosenbach-Belkin V and Fisher JRE (1990) Distribution and self-organization of photosynthetic pigments in micelles—implication for the assembly of light-harvesting complexes and reaction centers in the photosynthetic membrane. Proc Natl Acad Sci USA 87: 5430–5434

    Article  PubMed  CAS  Google Scholar 

  • Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104: 1854–1868

    Article  CAS  Google Scholar 

  • Segall MD (2002) Applications of ab initio atomistic simulations to biology. J Phys Condens Matter 14: 2957–2973

    Article  CAS  Google Scholar 

  • Sharp RE, Diers JR, Bocian DF and Dutton PL (1998a) Differential binding of iron(III) and zinc(II) protoporphyrin IX to synthetic four-helix bundles. J Am Chem Soc 120: 7103–7104

    Article  CAS  Google Scholar 

  • Sharp RE, Moser CC, Rabanal F and Dutton PL (1998b) Design, synthesis, and characterization of a photoactivatable flavocytochrome molecular maquette. Proc Natl Acad Sci USA 95: 10465–10470

    Article  CAS  Google Scholar 

  • Shifman JM, Moser CC, Kalsbeck WA, Bocian DF and Dutton PL (1998) Functionalized de novo designed proteins: Mechanism of proton coupling to oxidation/reduction in heme protein maquettes. Biochemistry 37: 16815–16827

    Article  PubMed  CAS  Google Scholar 

  • Siegbahn PEM and Blomberg MRA (2000) Transition-metal systems in biochemistry studied by high- accuracy quantum chemical methods. Chem Rev 100: 421–437

    Article  PubMed  CAS  Google Scholar 

  • Skalicky JJ, Bieber RJ, Gibney BR, Rabanal F, Dutton PL and Wand AJ (1998) Sequence-specific resonance assignments for a designed four-alpha-helix bundle protein. J Biomol NMR 11: 227–228

    Article  PubMed  CAS  Google Scholar 

  • Skalicky JJ, Gibney BR, Rabanal F, Urbauer RJB, Dutton PL and Wand AJ (1999) Solution structure of a designed fouralpha- helix bundle maquette scaffold. J Am Chem Soc 121: 4941–4951

    Article  CAS  Google Scholar 

  • Stahlberg H, Dubochet J, Vogel H and Ghosh R (1998) Are the light-harvesting I complexes from Rhodospirillum rubrum arranged around the reaction centre in a square geometry? J Mol Biol 282: 819–831

    Article  PubMed  CAS  Google Scholar 

  • Struthers MD, Cheng RP and Imperiali B (1996) Design of a monomeric 23-residue polypeptide with defined tertiary structure. Science 271: 342–345

    Article  PubMed  CAS  Google Scholar 

  • Sturgis JN, Olsen JD, Robert B and Hunter CN (1997) Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry 36: 2772–2778

    Article  PubMed  CAS  Google Scholar 

  • Sundström V (2000) Light in elementary biological reactions. Prog Quantum Electron 24: 187–238

    Article  Google Scholar 

  • Todd JB, Parkes-Loach PS, Leykam JF and Loach PA (1998) In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Biochemistry 37: 17458–17468

    Article  PubMed  CAS  Google Scholar 

  • Todd JB, Recchia PA, Parkes-Loach PS, Olsen JD, Fowler GJS, McGlynn P, Hunter CN and Loach PA (1999) Minimal requirements for in vitro reconstitution of the structural subunit of light-harvesting complexes of photosynthetic bacteria. Photosynth Res 62: 85–98

    Article  CAS  Google Scholar 

  • Tronrud DE and Matthews BW (1993) Refinement of the structure of a water-soluble antenna complex from green photosynthetic bacteria by incorporation of the chemically determined amino acid sequence. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, pp 13–22. Academic Press, New York

    Google Scholar 

  • van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR and de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40: 1587–1595

    Article  PubMed  CAS  Google Scholar 

  • Voigt CA, Gordon DB and Mayo SL (2000) Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. J Mol Biol 299: 789–803

    Article  PubMed  CAS  Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 angstrom LH1 and RC-LH1 at 25 angstrom. J Mol Biol 282: 833–845

    Article  PubMed  CAS  Google Scholar 

  • Wernisch L, Hery S and Wodak SJ (2000) Automatic protein design with all atom force-fields by exact and heuristic optimization. J Mol Biol 301: 713–736

    Article  PubMed  CAS  Google Scholar 

  • Woolfson DN (2001) Core-directed protein design. Curr Opin Struct Biol 11: 464–471

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Noy, D., Moser, C.C., Dutton, P.L. (2006). Bacteriochlorophyll Protein Maquettes. In: Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H. (eds) Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration, vol 25. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4516-6_24

Download citation

Publish with us

Policies and ethics